
NLP Coding Libraries
and Network
Analysis for Text
Corpora. With a
Bonus Track:
#GraphPoem Live
Interactive Coding
Chris Tanasescu

This package is intended for the personal, educational
use of DHSI attendees. Portions appear here with
consideration of fair use and fair dealing guidelines.
© DHSI 2023

Welcome to DHSI 2023!

Thank you for joining the DHSI community!

In this coursepack, you will find essential workshop materials prefaced by some
useful general information about DHSI 2023.

Given our community's focus on things computational, it will be a surprise to no
one that we might expect additional information and materials online for some
of the workshops—which will be made available to you where applicable—or
that the most current version of all DHSl-related information may be found on
our website at dhsi.org. Do check in there first if you need any information that's
not in this coursepack.

Please also note that materials in DHSI’s online workshop folders could be
updated at any point. We recommend checking back on any DHSI online
workshop folder(s) that have been shared with you in case additional materials
are added as DHSI approaches and takes place.

And please don't hesitate to be in touch with us at institut@uvic.ca or via Twitter
at @AlyssaA_DHSI or @DHInstitute if we can be of any help.

We hope you enjoy your time with us!

DHSI Information

Statement of Ethics & Inclusion

Please review the DHSI Statement of Ethics & Inclusion available here:
https://dhsi.org/statement-of-ethics-inclusion/

DHSI is dedicated to offering a safe, respectful, friendly, and collegial
environment for the benefit of everyone who attends and for the advancement
of the interests that bring us together. There is no place at DHSI for harassment
or intimidation of any kind.

By registering for DHSI, you have agreed to comply with these commitments.

Virtual Sessions

Your registration in DHSI 2023 also includes access to the virtual institute
lecture sessions. Access details for these talks will be shared as DHSI
approaches.

Due to the high volume of attendees, please ensure your DHSI registration name
or DHSI preferred name and your Zoom name match so that we know to let you
into the virtual sessions.

DHSI Materials

DHSI materials (ex. videos, documents, etc.) are intended for registrant use only.
By registering, you have agreed that you will not circulate any DHSI content. If
someone asks you for the materials, please invite them to complete the
registration form to request access or contact us at institut@uvic.ca.

DHSI Information

Auditor and participant registration

If you registered to audit any workshops, note that auditor involvement is
intended to be fully self-directed without active participation in the workshop.
The auditor option offers more flexibility regarding pace and time with the
workshop content. Your registration as an auditor will include access to some
asynchronous workshop materials only and does not include access to live
workshop sessions and/or individual/group instruction or consultation. Please
direct any questions about DHSI workshop auditing to institut@uvic.ca.

If you registered as a participant in any workshops, your registration includes
access to asynchronous content + active participation in live workshop
session(s). The workshop instructor(s) will contact you about the date(s), time(s),
and platform(s) of the live workshop session(s).

If you are unsure whether you registered as an auditor or participant, please
check your registration confirmation email. Further questions can be directed to
institut@uvic.ca.

Schedule

The at-a-glance schedule of DHSI 2023 courses, workshops, institute lectures
and aligned conferences & events can be found here:
https://dhsi.org/timetable/

All times are listed in North American Pacific Time Zone.

For those who registered as participants in any workshops, live sessions for
online workshops are not currently listed on the above-referenced schedule.
Instructors will be in touch with registered participants directly about the
exact date(s) and time(s) of their live workshop session(s).

DHSI Information

Acknowledgements

We would like to thank our partners and sponsors (including the Social Sciences
and Humanities Research Council), workshop instructors, aligned conference &
event organizers, institute lecturers, local facilitators, and beyond for making
this possible.

Further information

General DHSI 2023 information: https://dhsi.org/program/

Full course listings (in-person): https://dhsi.org/on-campus-courses/

Full workshop listings (online): https://dhsi.org/online-workshops/

Aligned conferences & events (in-person): https://dhsi.org/on-campus-
aligned-conferences-events/

Aligned conferences & events (online): https://dhsi.org/online-aligned-
conferences-events/

Institute lectures: https://dhsi.org/institute-lectures/

Frequently asked questions: https://dhsi.org/faq/

Any questions not addressed in the above pages? Please email us at
institut@uvic.ca!

NLP Coding Libraries and Network Analysis for Corpora. With a

Bonus Track: #GraphPoem Live Interactive Coding
DHSI 2022
Instructor: Chris Tanasescu (Margento)

The 3-day workshop offers a quick and effective intro to natural language processing (NLP) and
textual corpus network visualization and analysis.

We will be doing coding in Python and learning how to use (and compare) certain relevant
libraries such as Scikit-learn, SpaCy, Gensim, FastText, and NetworkX. We will apply those
packages in computationally analyzing texts and textual corpora, representing the corpora as
networks, and thus finding out unexpected if not amazing things about the texts they contain.

The knowledge and skills acquired—alongside our in-class applications—will be useful in
education and research in NLP, automated text and corpus analysis, network science and graph
theory applications, computational literary analysis and criticism, computational linguistics, and
vector space (and topic) modeling for the humanities.

On the fourth day, everybody will have the opportunity to participate in the #GraphPoem
event that will involve some of the Python scripts developed during the workshop. We will run
those and other scripts live (on JupyterHub) on ready-made and individually/collaboratively
assembled and expanded corpora, thus feeding into a hypermedia performance involving a Twitter
bot and a cross-artform livestream.

Coursepak

1. What is NLP?

https://www.gyansetu.in/what-is-natural-language-processing/

2. Scikit-learn, the best machine learning library?

Buitinck, L., et al. 2013. “API design for machine learning software:

experiences from the Scikit-learn project”

https://arxiv.org/pdf/1309.0238.pdf

3. FastText, the Facebook-trained word embeddings modeled on “subword” data

(character n-grams)

Bojanowski, P., et al. 2017. “Enriching Word Vectors with Subword

Information”

https://arxiv.org/pdf/1607.04606.pdf

Joulin, A., et al. 2016. “Bag of Tricks for Efficient Text Classification”

https://arxiv.org/pdf/1607.01759.pdf

4. What is SpaCy and what do we need it for?

https://spacy.io/usage/spacy-101

5. Gensim,”topic modeling for humans”…

Gensim, “generate similar”?

https://radimrehurek.com/gensim/intro.html

Radim Řehůřek talk: “Word2vec & friends” (7.1.2015)

https://www.gyansetu.in/what-is-natural-language-processing/
https://arxiv.org/pdf/1309.0238.pdf
https://arxiv.org/pdf/1607.04606.pdf
https://arxiv.org/pdf/1607.01759.pdf
https://spacy.io/usage/spacy-101
https://radimrehurek.com/gensim/intro.html

https://www.youtube.com/watch?v=wTp3P2UnTfQ

6. NetworkX

The Python package for the creation, manipulation, and study of the

structure, dynamics, and functions of complex networks,

https://networkx.org/documentation/stable/index.html

Hagberg, A.A., et al. 2008. “Exploring Network Structure, Dynamics, and

Function using NetworkX”

http://conference.scipy.org/proceedings/SciPy2008/paper_2/full_text.pdf

Additional Readings

1.Fundamentals

1.0. Sebastian, F. 2002. “Machine Learning in Automatic Text

Categorization.” https://dl.acm.org/doi/10.1145/505282.505283

1.1. Jurafsky, D. & Martin, J.H. 2021. “Text Processing.” Slides

presentation format.

https://web.stanford.edu/~jurafsky/slp3/slides/2_TextProc_Mar_25_2021.pdf

1.2. Jurafsky, D. & Martin, J.H. 2020. “Vector Semantic and Embeddings.”

https://web.stanford.edu/~jurafsky/slp3/6.pdf

2. Applications (selected)

2.0. Greene, E., et al. 2010. “Automatic Analysis of Rhythmic Poetry with

Applications to Generation and Translation.”

https://www.aclweb.org/anthology/D10-1051.pdf

2.1. Ganguly, D., et al. 2014. “Automatic Prediction of Text Aesthetics

and Interestingness.” https://www.aclweb.org/anthology/C14-1086.pdf

2.2. Lou, A., et al. 2015. “Multilabel Subject-based Classification of

Poetry.” https://bit.ly/3dmdL93

2.3. Tanasescu, C., et al. 2018. “Metaphor Detection by Deep Learning and

the Place of Poetic Metaphor in Digital Humanities.”

https://aaai.org/ocs/index.php/FLAIRS/FLAIRS18/paper/view/17704/16866

2.4. Sondheim, A., et al. 2019. “Our Shared World of Language: Reflections

on ‘US’ Poets Foreign Poets.” Blog post,

https://www.asymptotejournal.com/blog/2019/05/30/our-shared-world-of-

language-reflections-on-us-poets-foreign-poets/

2.5. Chatsiou, K. & Jankin Mikhaylov, S. 2020. ”Deep Learning for

Political Science.” https://arxiv.org/pdf/2005.06540.pdf

3. New Directions

3.0. Jurafsky, D. & Martin, J.H. 2020. “Neural Networks and Neural

Language Models.” https://web.stanford.edu/~jurafsky/slp3/7.pdf

3.1. Linzen, T. 2020. “How Can We Accelerate Progress Towards Human-like

https://www.youtube.com/watch?v=wTp3P2UnTfQ
https://networkx.org/documentation/stable/index.html
http://conference.scipy.org/proceedings/SciPy2008/paper_2/full_text.pdf
https://dl.acm.org/doi/10.1145/505282.505283
https://web.stanford.edu/~jurafsky/slp3/slides/2_TextProc_Mar_25_2021.pdf
https://web.stanford.edu/~jurafsky/slp3/6.pdf
https://www.aclweb.org/anthology/D10-1051.pdf
https://www.aclweb.org/anthology/C14-1086.pdf
https://bit.ly/3dmdL93
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS18/paper/view/17704/16866
https://www.asymptotejournal.com/blog/2019/05/30/our-shared-world-of-language-reflections-on-us-poets-foreign-poets/
https://www.asymptotejournal.com/blog/2019/05/30/our-shared-world-of-language-reflections-on-us-poets-foreign-poets/
https://arxiv.org/pdf/2005.06540.pdf
https://web.stanford.edu/~jurafsky/slp3/7.pdf

Linguistic Generalization?” https://arxiv.org/pdf/2005.00955.pdf

3.2. Ribeiro, M.T., et al. 2020. “Beyond Accuracy: Behavioral Testing of

NLP Models with CheckList.” https://arxiv.org/pdf/2005.04118.pdf

3.3. Kurfalı M. & Östling, R. 2021. "Let’s be explicit about that: Distant
supervision for implicit discourse relation classification via connective
prediction." https://aclanthology.org/2021.unimplicit-1.1/.

3.4. Wang, S., et al. 2021.“Phrase-BERT: Improved Phrase Embeddings from
BERT with an Application to Corpus Exploration.”
https://paperswithcode.com/paper/phrase-bert-improved-phrase-embeddings-
from

3.5. Gweon, H. & Schonlau, M. 2022. “Automated classification for open-
ended questions with BERT.” https://arxiv.org/abs/2209.06178

https://arxiv.org/pdf/2005.00955.pdf
https://arxiv.org/pdf/2005.04118.pdf
https://paperswithcode.com/paper/phrase-bert-improved-phrase-embeddings-from
https://arxiv.org/abs/2209.06178

Machine Learning in Automated Text Categorization

FABRIZIO SEBASTIANI
Consiglio Nazionale delle Ricerche, Italy

The automated categorization (or classification) of texts into predefined categories has
witnessed a booming interest in the last 10 years, due to the increased availability of
documents in digital form and the ensuing need to organize them. In the research
community the dominant approach to this problem is based on machine learning
techniques: a general inductive process automatically builds a classifier by learning,
from a set of preclassified documents, the characteristics of the categories. The
advantages of this approach over the knowledge engineering approach (consisting in
the manual definition of a classifier by domain experts) are a very good effectiveness,
considerable savings in terms of expert labor power, and straightforward portability to
different domains. This survey discusses the main approaches to text categorization
that fall within the machine learning paradigm. We will discuss in detail issues
pertaining to three different problems, namely, document representation, classifier
construction, and classifier evaluation.

Categories and Subject Descriptors: H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing—Indexing methods; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval—Information filtering; H.3.4
[Information Storage and Retrieval]: Systems and Software—Performance
evaluation (efficiency and effectiveness); I.2.6 [Artificial Intelligence]: Learning—
Induction

General Terms: Algorithms, Experimentation, Theory

Additional Key Words and Phrases: Machine learning, text categorization, text
classification

1. INTRODUCTION

In the last 10 years content-based doc-
ument management tasks (collectively
known as information retrieval—IR) have
gained a prominent status in the informa-
tion systems field, due to the increased
availability of documents in digital form
and the ensuing need to access them in
flexible ways. Text categorization (TC—
a.k.a. text classification, or topic spotting),
the activity of labeling natural language

Author’s address: Istituto di Elaborazione dell’Informazione, Consiglio Nazionale delle Ricerche, Via G.
Moruzzi 1, 56124 Pisa, Italy; e-mail: fabrizio@iei.pi.cnr.it.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee.
c⃝2002 ACM 0360-0300/02/0300-0001 $5.00

texts with thematic categories from a pre-
defined set, is one such task. TC dates
back to the early ’60s, but only in the early
’90s did it become a major subfield of the
information systems discipline, thanks to
increased applicative interest and to the
availability of more powerful hardware.
TC is now being applied in many contexts,
ranging from document indexing based
on a controlled vocabulary, to document
filtering, automated metadata generation,
word sense disambiguation, population of

ACM Computing Surveys, Vol. 34, No. 1, March 2002, pp. 1–47.

2 Sebastiani

hierarchical catalogues of Web resources,
and in general any application requiring
document organization or selective and
adaptive document dispatching.

Until the late ’80s the most popular ap-
proach to TC, at least in the “operational”
(i.e., real-world applications) community,
was a knowledge engineering (KE) one,
consisting in manually defining a set of
rules encoding expert knowledge on how
to classify documents under the given cat-
egories. In the ’90s this approach has in-
creasingly lost popularity (especially in
the research community) in favor of the
machine learning (ML) paradigm, accord-
ing to which a general inductive process
automatically builds an automatic text
classifier by learning, from a set of preclas-
sified documents, the characteristics of the
categories of interest. The advantages of
this approach are an accuracy comparable
to that achieved by human experts, and
a considerable savings in terms of expert
labor power, since no intervention from ei-
ther knowledge engineers or domain ex-
perts is needed for the construction of the
classifier or for its porting to a different set
of categories. It is the ML approach to TC
that this paper concentrates on.

Current-day TC is thus a discipline at
the crossroads of ML and IR, and as
such it shares a number of characteris-
tics with other tasks such as information/
knowledge extraction from texts and text
mining [Knight 1999; Pazienza 1997].
There is still considerable debate on where
the exact border between these disciplines
lies, and the terminology is still evolving.
“Text mining” is increasingly being used
to denote all the tasks that, by analyz-
ing large quantities of text and detect-
ing usage patterns, try to extract probably
useful (although only probably correct)
information. According to this view, TC is
an instance of text mining. TC enjoys quite
a rich literature now, but this is still fairly
scattered.1 Although two international
journals have devoted special issues to

1 A fully searchable bibliography on TC created and
maintained by this author is available at http://
liinwww.ira.uka.de/bibliography/Ai/automated.text.
categorization.html.

this topic [Joachims and Sebastiani 2002;
Lewis and Hayes 1994], there are no sys-
tematic treatments of the subject: there
are neither textbooks nor journals en-
tirely devoted to TC yet, and Manning
and Schütze [1999, Chapter 16] is the only
chapter-length treatment of the subject.
As a note, we should warn the reader
that the term “automatic text classifica-
tion” has sometimes been used in the liter-
ature to mean things quite different from
the ones discussed here. Aside from (i) the
automatic assignment of documents to a
predefined set of categories, which is the
main topic of this paper, the term has also
been used to mean (ii) the automatic iden-
tification of such a set of categories (e.g.,
Borko and Bernick [1963]), or (iii) the au-
tomatic identification of such a set of cat-
egories and the grouping of documents
under them (e.g., Merkl [1998]), a task
usually called text clustering, or (iv) any
activity of placing text items into groups,
a task that has thus both TC and text clus-
tering as particular instances [Manning
and Schütze 1999].

This paper is organized as follows. In
Section 2 we formally define TC and its
various subcases, and in Section 3 we
review its most important applications.
Section 4 describes the main ideas under-
lying the ML approach to classification.
Our discussion of text classification starts
in Section 5 by introducing text index-
ing, that is, the transformation of textual
documents into a form that can be inter-
preted by a classifier-building algorithm
and by the classifier eventually built by it.
Section 6 tackles the inductive construc-
tion of a text classifier from a “training”
set of preclassified documents. Section 7
discusses the evaluation of text classi-
fiers. Section 8 concludes, discussing open
issues and possible avenues of further
research for TC.

2. TEXT CATEGORIZATION

2.1. A Definition of Text Categorization

Text categorization is the task of assigning
a Boolean value to each pair ⟨d j , ci⟩ ∈D ×
C, where D is a domain of documents and

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 3

C = {c1, . . . , c|C|} is a set of predefined cat-
egories. A value of T assigned to ⟨d j , ci⟩
indicates a decision to file d j under ci,
while a value of F indicates a decision
not to file d j under ci. More formally, the
task is to approximate the unknown tar-
get function !̆ : D× C → {T, F } (that de-
scribes how documents ought to be classi-
fied) by means of a function ! : D × C →
{T, F } called the classifier (aka rule, or
hypothesis, or model) such that !̆ and !
“coincide as much as possible.” How to pre-
cisely define and measure this coincidence
(called effectiveness) will be discussed in
Section 7.1. From now on we will assume
that:

—The categories are just symbolic la-
bels, and no additional knowledge (of
a procedural or declarative nature) of
their meaning is available.

—No exogenous knowledge (i.e., data pro-
vided for classification purposes by an
external source) is available; therefore,
classification must be accomplished on
the basis of endogenous knowledge only
(i.e., knowledge extracted from the doc-
uments). In particular, this means that
metadata such as, for example, pub-
lication date, document type, publica-
tion source, etc., is not assumed to be
available.

The TC methods we will discuss are
thus completely general, and do not de-
pend on the availability of special-purpose
resources that might be unavailable or
costly to develop. Of course, these as-
sumptions need not be verified in opera-
tional settings, where it is legitimate to
use any source of information that might
be available or deemed worth developing
[Dı́az Esteban et al. 1998; Junker and
Abecker 1997]. Relying only on endoge-
nous knowledge means classifying a docu-
ment based solely on its semantics, and
given that the semantics of a document
is a subjective notion, it follows that the
membership of a document in a cate-
gory (pretty much as the relevance of a
document to an information need in IR
[Saracevic 1975]) cannot be decided de-
terministically. This is exemplified by the

phenomenon of inter-indexer inconsistency
[Cleverdon 1984]: when two human ex-
perts decide whether to classify document
d j under category ci, they may disagree,
and this in fact happens with relatively
high frequency. A news article on Clinton
attending Dizzy Gillespie’s funeral could
be filed underPolitics, or under Jazz, or un-
der both, or even under neither, depending
on the subjective judgment of the expert.

2.2. Single-Label Versus Multilabel
Text Categorization

Different constraints may be enforced on
the TC task, depending on the applica-
tion. For instance we might need that, for
a given integer k, exactly k (or ≤ k, or ≥ k)
elements of C be assigned to each d j ∈D.
The case in which exactly one category
must be assigned to each d j ∈D is often
called the single-label (a.k.a. nonoverlap-
ping categories) case, while the case in
which any number of categories from 0
to |C| may be assigned to the same d j ∈D
is dubbed the multilabel (aka overlapping
categories) case. A special case of single-
label TC is binary TC, in which each d j ∈D
must be assigned either to category ci or
to its complement c̄i.

From a theoretical point of view, the
binary case (hence, the single-label case,
too) is more general than the multilabel,
since an algorithm for binary classifica-
tion can also be used for multilabel clas-
sification: one needs only transform the
problem of multilabel classification under
{c1, . . . , c|C|} into |C| independent problems
of binary classification under {ci, c̄i}, for
i = 1, . . . , |C|. However, this requires that
categories be stochastically independent
of each other, that is, for any c′, c′′, the
value of !̆(d j , c′) does not depend on
the value of !̆(d j , c′′) and vice versa;
this is usually assumed to be the case
(applications in which this is not the case
are discussed in Section 3.5). The converse
is not true: an algorithm for multilabel
classification cannot be used for either bi-
nary or single-label classification. In fact,
given a document d j to classify, (i) the clas-
sifier might attribute k > 1 categories to
d j , and it might not be obvious how to

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

4 Sebastiani

choose a “most appropriate” category from
them; or (ii) the classifier might attribute
to d j no category at all, and it might not
be obvious how to choose a “least inappro-
priate” category from C.

In the rest of the paper, unless explicitly
mentioned, we will deal with the binary
case. There are various reasons for this:

—The binary case is important in itself
because important TC applications, in-
cluding filtering (see Section 3.3), con-
sist of binary classification problems
(e.g., deciding whether d j is about Jazz
or not). In TC, most binary classification
problems feature unevenly populated
categories (e.g., much fewer documents
are about Jazz than are not) and un-
evenly characterized categories (e.g.,
what is about Jazz can be characterized
much better than what is not).

—Solving the binary case also means solv-
ing the multilabel case, which is also
representative of important TC applica-
tions, including automated indexing for
Boolean systems (see Section 3.1).

—Most of the TC literature is couched in
terms of the binary case.

—Most techniques for binary classifica-
tion are just special cases of existing
techniques for the single-label case, and
are simpler to illustrate than these
latter.

This ultimately means that we will view
classification under C = {c1, . . . , c|C|} as
consisting of |C| independent problems of
classifying the documents in D under a
given category ci, for i = 1, . . . , |C|. A clas-
sifier for ci is then a function !i : D →
{T, F } that approximates an unknown tar-
get function !̆i : D → {T, F }.

2.3. Category-Pivoted Versus
Document-Pivoted Text Categorization

There are two different ways of using
a text classifier. Given d j ∈D, we might
want to find all the ci ∈ C under which it
should be filed (document-pivoted catego-
rization—DPC); alternatively, given ci ∈ C,
we might want to find all the d j ∈ D that
should be filed under it (category-pivoted

categorization—CPC). This distinction is
more pragmatic than conceptual, but is
important since the sets C andD might not
be available in their entirety right from
the start. It is also relevant to the choice
of the classifier-building method, as some
of these methods (see Section 6.9) allow
the construction of classifiers with a defi-
nite slant toward one or the other style.

DPC is thus suitable when documents
become available at different moments in
time, e.g., in filtering e-mail. CPC is in-
stead suitable when (i) a new category
c|C|+1 may be added to an existing set
C = {c1, . . . , c|C|} after a number of docu-
ments have already been classified under
C, and (ii) these documents need to be re-
considered for classification under c|C|+1
(e.g., Larkey [1999]). DPC is used more of-
ten than CPC, as the former situation is
more common than the latter.

Although some specific techniques ap-
ply to one style and not to the other (e.g.,
the proportional thresholding method dis-
cussed in Section 6.1 applies only to CPC),
this is more the exception than the rule:
most of the techniques we will discuss al-
low the construction of classifiers capable
of working in either mode.

2.4. “Hard” Categorization Versus
Ranking Categorization

While a complete automation of the
TC task requires a T or F decision
for each pair ⟨d j , ci⟩, a partial automa-
tion of this process might have different
requirements.

For instance, given d j ∈D a system
might simply rank the categories in
C = {c1, . . . , c|C|} according to their esti-
mated appropriateness to d j , without tak-
ing any “hard” decision on any of them.
Such a ranked list would be of great
help to a human expert in charge of
taking the final categorization decision,
since she could thus restrict the choice
to the category (or categories) at the top
of the list, rather than having to examine
the entire set. Alternatively, given ci ∈ C
a system might simply rank the docu-
ments in D according to their estimated
appropriateness to ci; symmetrically, for

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 5

classification under ci a human expert
would just examine the top-ranked doc-
uments instead of the entire document
set. These two modalities are sometimes
called category-ranking TC and document-
ranking TC [Yang 1999], respectively,
and are the obvious counterparts of DPC
and CPC.

Semiautomated, “interactive” classifica-
tion systems [Larkey and Croft 1996] are
useful especially in critical applications
in which the effectiveness of a fully au-
tomated system may be expected to be
significantly lower than that of a human
expert. This may be the case when the
quality of the training data (see Section 4)
is low, or when the training documents
cannot be trusted to be a representative
sample of the unseen documents that are
to come, so that the results of a completely
automatic classifier could not be trusted
completely.

In the rest of the paper, unless explicitly
mentioned, we will deal with “hard” classi-
fication; however, many of the algorithms
we will discuss naturally lend themselves
to ranking TC too (more details on this in
Section 6.1).

3. APPLICATIONS OF TEXT
CATEGORIZATION

TC goes back to Maron’s [1961] semi-
nal work on probabilistic text classifica-
tion. Since then, it has been used for a
number of different applications, of which
we here briefly review the most impor-
tant ones. Note that the borders between
the different classes of applications listed
here are fuzzy and somehow artificial, and
some of these may be considered special
cases of others. Other applications we do
not explicitly discuss are speech catego-
rization by means of a combination of
speech recognition and TC [Myers et al.
2000; Schapire and Singer 2000], multi-
media document categorization through
the analysis of textual captions [Sable
and Hatzivassiloglou 2000], author iden-
tification for literary texts of unknown or
disputed authorship [Forsyth 1999], lan-
guage identification for texts of unknown
language [Cavnar and Trenkle 1994],

automated identification of text genre
[Kessler et al. 1997], and automated essay
grading [Larkey 1998].

3.1. Automatic Indexing for Boolean
Information Retrieval Systems

The application that has spawned most
of the early research in the field [Borko
and Bernick 1963; Field 1975; Gray and
Harley 1971; Heaps 1973; Maron 1961]
is that of automatic document indexing
for IR systems relying on a controlled
dictionary, the most prominent example
of which is Boolean systems. In these
latter each document is assigned one or
more key words or key phrases describ-
ing its content, where these key words and
key phrases belong to a finite set called
controlled dictionary, often consisting of
a thematic hierarchical thesaurus (e.g.,
the NASA thesaurus for the aerospace
discipline, or the MESH thesaurus for
medicine). Usually, this assignment is
done by trained human indexers, and is
thus a costly activity.

If the entries in the controlled vocab-
ulary are viewed as categories, text in-
dexing is an instance of TC, and may
thus be addressed by the automatic tech-
niques described in this paper. Recall-
ing Section 2.2, note that this applica-
tion may typically require that k1 ≤ x ≤ k2
key words are assigned to each docu-
ment, for given k1, k2. Document-pivoted
TC is probably the best option, so that
new documents may be classified as they
become available. Various text classifiers
explicitly conceived for document index-
ing have been described in the literature;
see, for example, Fuhr and Knorz [1984],
Robertson and Harding [1984], and Tzeras
and Hartmann [1993].

Automatic indexing with controlled dic-
tionaries is closely related to automated
metadata generation. In digital libraries,
one is usually interested in tagging doc-
uments by metadata that describes them
under a variety of aspects (e.g., creation
date, document type or format, availabil-
ity, etc.). Some of this metadata is the-
matic, that is, its role is to describe the
semantics of the document by means of

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

6 Sebastiani

bibliographic codes, key words or key
phrases. The generation of this metadata
may thus be viewed as a problem of doc-
ument indexing with controlled dictio-
nary, and thus tackled by means of TC
techniques.

3.2. Document Organization

Indexing with a controlled vocabulary is
an instance of the general problem of docu-
ment base organization. In general, many
other issues pertaining to document or-
ganization and filing, be it for purposes
of personal organization or structuring of
a corporate document base, may be ad-
dressed by TC techniques. For instance,
at the offices of a newspaper incoming
“classified” ads must be, prior to publi-
cation, categorized under categories such
as Personals, Cars for Sale, Real Estate,
etc. Newspapers dealing with a high vol-
ume of classified ads would benefit from an
automatic system that chooses the most
suitable category for a given ad. Other
possible applications are the organiza-
tion of patents into categories for mak-
ing their search easier [Larkey 1999], the
automatic filing of newspaper articles un-
der the appropriate sections (e.g., Politics,
Home News, Lifestyles, etc.), or the auto-
matic grouping of conference papers into
sessions.

3.3. Text Filtering

Text filtering is the activity of classify-
ing a stream of incoming documents dis-
patched in an asynchronous way by an
information producer to an information
consumer [Belkin and Croft 1992]. A typ-
ical case is a newsfeed, where the pro-
ducer is a news agency and the consumer
is a newspaper [Hayes et al. 1990]. In
this case, the filtering system should block
the delivery of the documents the con-
sumer is likely not interested in (e.g., all
news not concerning sports, in the case
of a sports newspaper). Filtering can be
seen as a case of single-label TC, that
is, the classification of incoming docu-
ments into two disjoint categories, the
relevant and the irrelevant. Additionally,

a filtering system may also further clas-
sify the documents deemed relevant to
the consumer into thematic categories;
in the example above, all articles about
sports should be further classified accord-
ing to which sport they deal with, so as
to allow journalists specialized in indi-
vidual sports to access only documents of
prospective interest for them. Similarly,
an e-mail filter might be trained to discard
“junk” mail [Androutsopoulos et al. 2000;
Drucker et al. 1999] and further classify
nonjunk mail into topical categories of in-
terest to the user.

A filtering system may be installed at
the producer end, in which case it must
route the documents to the interested con-
sumers only, or at the consumer end, in
which case it must block the delivery of
documents deemed uninteresting to the
consumer. In the former case, the system
builds and updates a “profile” for each con-
sumer [Liddy et al. 1994], while in the lat-
ter case (which is the more common, and
to which we will refer in the rest of this
section) a single profile is needed.

A profile may be initially specified by
the user, thereby resembling a standing
IR query, and is updated by the system
by using feedback information provided
(either implicitly or explicitly) by the user
on the relevance or nonrelevance of the de-
livered messages. In the TREC community
[Lewis 1995c], this is called adaptive fil-
tering, while the case in which no user-
specified profile is available is called ei-
ther routing or batch filtering, depending
on whether documents have to be ranked
in decreasing order of estimated relevance
or just accepted/rejected. Batch filtering
thus coincides with single-label TC un-
der |C| = 2 categories; since this latter is
a completely general TC task, some au-
thors [Hull 1994; Hull et al. 1996; Schapire
et al. 1998; Schütze et al. 1995], some-
what confusingly, use the term “filtering”
in place of the more appropriate term
“categorization.”

In information science, document filter-
ing has a tradition dating back to the
’60s, when, addressed by systems of var-
ious degrees of automation and dealing
with the multiconsumer case discussed

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 7

above, it was called selective dissemina-
tion of information or current awareness
(see Korfhage [1997, Chapter 6]). The ex-
plosion in the availability of digital infor-
mation has boosted the importance of such
systems, which are nowadays being used
in contexts such as the creation of person-
alized Web newspapers, junk e-mail block-
ing, and Usenet news selection.

Information filtering by ML techniques
is widely discussed in the literature: see
Amati and Crestani [1999], Iyer et al.
[2000], Kim et al. [2000], Tauritz et al.
[2000], and Yu and Lam [1998].

3.4. Word Sense Disambiguation

Word sense disambiguation (WSD) is the
activity of finding, given the occurrence in
a text of an ambiguous (i.e., polysemous
or homonymous) word, the sense of this
particular word occurrence. For instance,
bank may have (at least) two different
senses in English, as in the Bank of
England (a financial institution) or the
bank of river Thames (a hydraulic engi-
neering artifact). It is thus a WSD task
to decide which of the above senses the oc-
currence of bank in Last week I borrowed
some money from the bank has. WSD is
very important for many applications, in-
cluding natural language processing, and
indexing documents by word senses rather
than by words for IR purposes. WSD may
be seen as a TC task (see Gale et al.
[1993]; Escudero et al. [2000]) once we
view word occurrence contexts as doc-
uments and word senses as categories.
Quite obviously, this is a single-label TC
case, and one in which document-pivoted
TC is usually the right choice.

WSD is just an example of the more gen-
eral issue of resolving natural language
ambiguities, one of the most important
problems in computational linguistics.
Other examples, which may all be tackled
by means of TC techniques along the lines
discussed for WSD, are context-sensitive
spelling correction, prepositional phrase
attachment, part of speech tagging, and
word choice selection in machine transla-
tion; see Roth [1998] for an introduction.

3.5. Hierarchical Categorization
of Web Pages

TC has recently aroused a lot of interest
also for its possible application to auto-
matically classifying Web pages, or sites,
under the hierarchical catalogues hosted
by popular Internet portals. When Web
documents are catalogued in this way,
rather than issuing a query to a general-
purpose Web search engine a searcher
may find it easier to first navigate in
the hierarchy of categories and then re-
strict her search to a particular category
of interest.

Classifying Web pages automatically
has obvious advantages, since the man-
ual categorization of a large enough sub-
set of the Web is infeasible. Unlike in the
previous applications, it is typically the
case that each category must be populated
by a set of k1 ≤ x ≤ k2 documents. CPC
should be chosen so as to allow new cate-
gories to be added and obsolete ones to be
deleted.

With respect to previously discussed TC
applications, automatic Web page catego-
rization has two essential peculiarities:
(1) The hypertextual nature of the doc-

uments: Links are a rich source of
information, as they may be under-
stood as stating the relevance of the
linked page to the linking page. Tech-
niques exploiting this intuition in a
TC context have been presented by
Attardi et al. [1998], Chakrabarti et al.
[1998b], Fürnkranz [1999], Gövert
et al. [1999], and Oh et al. [2000]
and experimentally compared by Yang
et al. [2002].

(2) The hierarchical structure of the cate-
gory set: This may be used, for example,
by decomposing the classification prob-
lem into a number of smaller classifica-
tion problems, each corresponding to a
branching decision at an internal node.
Techniques exploiting this intuition in
a TC context have been presented by
Dumais and Chen [2000], Chakrabarti
et al. [1998a], Koller and Sahami
[1997], McCallum et al. [1998], Ruiz
and Srinivasan [1999], and Weigend
et al. [1999].

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

8 Sebastiani

if ((wheat & farm) or
(wheat & commodity) or

(bushels & export) or
(wheat & tonnes) or

(wheat & winter & ¬ soft)) then WHEAT else ¬ WHEAT

Fig. 1. Rule-based classifier for the WHEAT category; key words
are indicated in italic, categories are indicated in SMALL CAPS (from
Apté et al. [1994]).

4. THE MACHINE LEARNING APPROACH
TO TEXT CATEGORIZATION

In the ’80s, the most popular approach
(at least in operational settings) for the
creation of automatic document classifiers
consisted in manually building, by means
of knowledge engineering (KE) techniques,
an expert system capable of taking TC de-
cisions. Such an expert system would typ-
ically consist of a set of manually defined
logical rules, one per category, of type

if ⟨DNF formula⟩ then ⟨category⟩.

A DNF (“disjunctive normal form”) for-
mula is a disjunction of conjunctive
clauses; the document is classified under
⟨category⟩ iff it satisfies the formula, that
is, iff it satisfies at least one of the clauses.
The most famous example of this approach
is the CONSTRUE system [Hayes et al. 1990],
built by Carnegie Group for the Reuters
news agency. A sample rule of the type
used in CONSTRUE is illustrated in Figure 1.

The drawback of this approach is
the knowledge acquisition bottleneck well
known from the expert systems literature.
That is, the rules must be manually de-
fined by a knowledge engineer with the
aid of a domain expert (in this case, an
expert in the membership of documents in
the chosen set of categories): if the set of
categories is updated, then these two pro-
fessionals must intervene again, and if the
classifier is ported to a completely differ-
ent domain (i.e., set of categories), a differ-
ent domain expert needs to intervene and
the work has to be repeated from scratch.

On the other hand, it was originally
suggested that this approach can give very
good effectiveness results: Hayes et al.
[1990] reported a .90 “breakeven” result
(see Section 7) on a subset of the Reuters
test collection, a figure that outperforms

even the best classifiers built in the late
’90s by state-of-the-art ML techniques.
However, no other classifier has been
tested on the same dataset as CONSTRUE,
and it is not clear whether this was a
randomly chosen or a favorable subset of
the entire Reuters collection. As argued
by Yang [1999], the results above do not
allow us to state that these effectiveness
results may be obtained in general.

Since the early ’90s, the ML approach
to TC has gained popularity and has
eventually become the dominant one, at
least in the research community (see
Mitchell [1996] for a comprehensive intro-
duction to ML). In this approach, a general
inductive process (also called the learner)
automatically builds a classifier for a cat-
egory ci by observing the characteristics
of a set of documents manually classified
under ci or c̄i by a domain expert; from
these characteristics, the inductive pro-
cess gleans the characteristics that a new
unseen document should have in order to
be classified under ci. In ML terminology,
the classification problem is an activity
of supervised learning, since the learning
process is “supervised” by the knowledge
of the categories and of the training in-
stances that belong to them.2

The advantages of the ML approach
over the KE approach are evident. The en-
gineering effort goes toward the construc-
tion not of a classifier, but of an automatic
builder of classifiers (the learner). This
means that if a learner is (as it often is)
available off-the-shelf, all that is needed
is the inductive, automatic construction of
a classifier from a set of manually clas-
sified documents. The same happens if a

2 Within the area of content-based document man-
agement tasks, an example of an unsupervised learn-
ing activity is document clustering (see Section 1).

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 9

classifier already exists and the original
set of categories is updated, or if the clas-
sifier is ported to a completely different
domain.

In the ML approach, the preclassified
documents are then the key resource.
In the most favorable case, they are al-
ready available; this typically happens for
organizations which have previously car-
ried out the same categorization activity
manually and decide to automate the pro-
cess. The less favorable case is when no
manually classified documents are avail-
able; this typically happens for organi-
zations that start a categorization activ-
ity and opt for an automated modality
straightaway. The ML approach is more
convenient than the KE approach also in
this latter case. In fact, it is easier to man-
ually classify a set of documents than to
build and tune a set of rules, since it is
easier to characterize a concept extension-
ally (i.e., to select instances of it) than in-
tensionally (i.e., to describe the concept in
words, or to describe a procedure for rec-
ognizing its instances).

Classifiers built by means of ML tech-
niques nowadays achieve impressive lev-
els of effectiveness (see Section 7), making
automatic classification a qualitatively
(and not only economically) viable alter-
native to manual classification.

4.1. Training Set, Test Set, and
Validation Set

The ML approach relies on the availabil-
ity of an initial corpus " = {d1, . . . , d|"|} ⊂
D of documents preclassified under C =
{c1, . . . , c|C|}. That is, the values of the total
function !̆ : D×C → {T, F } are known for
every pair ⟨d j , ci⟩ ∈ " × C. A document d j
is a positive example of ci if !̆(d j , ci) = T ,
a negative example of ci if !̆(d j , ci) = F .

In research settings (and in most opera-
tional settings too), once a classifier ! has
been built it is desirable to evaluate its ef-
fectiveness. In this case, prior to classifier
construction the initial corpus is split in
two sets, not necessarily of equal size:

—a training(-and-validation) set T V =
{d1, . . . , d|T V |}. The classifier ! for cat-
egories C = {c1, . . . , c|C|} is inductively

built by observing the characteristics of
these documents;

—a test set Te = {d|T V |+1, . . . , d|"|}, used
for testing the effectiveness of the clas-
sifiers. Each d j ∈ Te is fed to the classi-
fier, and the classifier decisions !(d j , ci)
are compared with the expert decisions
!̆(d j , ci). A measure of classification
effectiveness is based on how often
the !(d j , ci) values match the !̆(d j , ci)
values.

The documents in Te cannot participate
in any way in the inductive construc-
tion of the classifiers; if this condition
were not satisfied, the experimental re-
sults obtained would likely be unrealis-
tically good, and the evaluation would
thus have no scientific character [Mitchell
1996, page 129]. In an operational setting,
after evaluation has been performed one
would typically retrain the classifier on
the entire initial corpus, in order to boost
effectiveness. In this case, the results of
the previous evaluation would be a pes-
simistic estimate of the real performance,
since the final classifier has been trained
on more data than the classifier evaluated.

This is called the train-and-test ap-
proach. An alternative is the k-fold cross-
validation approach (see Mitchell [1996],
page 146), in which k different classi-
fiers !1, . . . , !k are built by partition-
ing the initial corpus into k disjoint sets
Te1, . . . , Tek and then iteratively apply-
ing the train-and-test approach on pairs
⟨T Vi = "−Tei, Tei⟩. The final effectiveness
figure is obtained by individually comput-
ing the effectiveness of !1, . . . , !k , and
then averaging the individual results in
some way.

In both approaches, it is often the case
that the internal parameters of the clas-
sifiers must be tuned by testing which
values of the parameters yield the best
effectiveness. In order to make this op-
timization possible, in the train-and-test
approach the set {d1, . . . , d|T V |} is further
split into a training set Tr = {d1, . . . , d|Tr|},
from which the classifier is built, and a val-
idation set Va = {d|Tr|+1, . . . , d|T V |} (some-
times called a hold-out set), on which
the repeated tests of the classifier aimed

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

10 Sebastiani

at parameter optimization are performed;
the obvious variant may be used in the
k-fold cross-validation case. Note that, for
the same reason why we do not test a clas-
sifier on the documents it has been trained
on, we do not test it on the documents it
has been optimized on: test set and vali-
dation set must be kept separate.3

Given a corpus ", one may define the
generality g"(ci) of a category ci as the
percentage of documents that belong to ci,
that is:

g"(ci) = |{d j ∈ " | !̆(d j , ci) = T }|
|"|

.

The training set generality gTr(ci), valida-
tion set generality gVa(ci), and test set gen-
erality gTe(ci) of ci may be defined in the
obvious way.

4.2. Information Retrieval Techniques
and Text Categorization

Text categorization heavily relies on the
basic machinery of IR. The reason is that
TC is a content-based document manage-
ment task, and as such it shares many
characteristics with other IR tasks such
as text search.

IR techniques are used in three phases
of the text classifier life cycle:

(1) IR-style indexing is always performed
on the documents of the initial corpus
and on those to be classified during the
operational phase;

(2) IR-style techniques (such as docu-
ment-request matching, query refor-
mulation, . . .) are often used in the in-
ductive construction of the classifiers;

(3) IR-style evaluation of the effectiveness
of the classifiers is performed.

The various approaches to classification
differ mostly for how they tackle (2),
although in a few cases nonstandard

3 From now on, we will take the freedom to use the
expression “test document” to denote any document
not in the training set and validation set. This in-
cludes thus any document submitted to the classifier
in the operational phase.

approaches to (1) and (3) are also used. In-
dexing, induction, and evaluation are the
themes of Sections 5, 6 and 7, respectively.

5. DOCUMENT INDEXING AND
DIMENSIONALITY REDUCTION

5.1. Document Indexing

Texts cannot be directly interpreted by a
classifier or by a classifier-building algo-
rithm. Because of this, an indexing proce-
dure that maps a text d j into a compact
representation of its content needs to be
uniformly applied to training, validation,
and test documents. The choice of a rep-
resentation for text depends on what one
regards as the meaningful units of text
(the problem of lexical semantics) and the
meaningful natural language rules for the
combination of these units (the problem
of compositional semantics). Similarly to
what happens in IR, in TC this latter prob-
lem is usually disregarded,4 and a text
d j is usually represented as a vector of
term weights d⃗ j = ⟨w1 j , . . . , w|T | j ⟩, where
T is the set of terms (sometimes called
features) that occur at least once in at least
one document of Tr, and 0 ≤ wkj ≤ 1 rep-
resents, loosely speaking, how much term
tk contributes to the semantics of docu-
ment d j . Differences among approaches
are accounted for by

(1) different ways to understand what a
term is;

(2) different ways to compute term
weights.

A typical choice for (1) is to identify terms
with words. This is often called either the
set of words or the bag of words approach
to document representation, depending on
whether weights are binary or not.

In a number of experiments [Apté
et al. 1994; Dumais et al. 1998; Lewis
1992a], it has been found that represen-
tations more sophisticated than this do
not yield significantly better effectiveness,
thereby confirming similar results from IR

4 An exception to this is represented by learning ap-
proaches based on hidden Markov models [Denoyer
et al. 2001; Frasconi et al. 2002].

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 11

[Salton and Buckley 1988]. In particular,
some authors have used phrases, rather
than individual words, as indexing terms
[Fuhr et al. 1991; Schütze et al. 1995;
Tzeras and Hartmann 1993], but the ex-
perimental results found to date have
not been uniformly encouraging, irrespec-
tively of whether the notion of “phrase” is
motivated
—syntactically, that is, the phrase is such

according to a grammar of the language
(see Lewis [1992a]); or

—statistically, that is, the phrase is
not grammatically such, but is com-
posed of a set/sequence of words whose
patterns of contiguous occurrence in the
collection are statistically significant
(see Caropreso et al. [2001]).

Lewis [1992a] argued that the likely rea-
son for the discouraging results is that,
although indexing languages based on
phrases have superior semantic qualities,
they have inferior statistical qualities
with respect to word-only indexing lan-
guages: a phrase-only indexing language
has “more terms, more synonymous or
nearly synonymous terms, lower consis-
tency of assignment (since synonymous
terms are not assigned to the same docu-
ments), and lower document frequency for
terms” [Lewis 1992a, page 40]. Although
his remarks are about syntactically moti-
vated phrases, they also apply to statisti-
cally motivated ones, although perhaps to
a smaller degree. A combination of the two
approaches is probably the best way to
go: Tzeras and Hartmann [1993] obtained
significant improvements by using noun
phrases obtained through a combination
of syntactic and statistical criteria, where
a “crude” syntactic method was comple-
mented by a statistical filter (only those
syntactic phrases that occurred at least
three times in the positive examples of a
category ci were retained). It is likely that
the final word on the usefulness of phrase
indexing in TC has still to be told, and
investigations in this direction are still
being actively pursued [Caropreso et al.
2001; Mladenić and Grobelnik 1998].

As for issue (2), weights usually
range between 0 and 1 (an exception is

Lewis et al. [1996]), and for ease of expo-
sition we will assume they always do. As a
special case, binary weights may be used
(1 denoting presence and 0 absence of the
term in the document); whether binary or
nonbinary weights are used depends on
the classifier learning algorithm used. In
the case of nonbinary indexing, for deter-
mining the weight wkj of term tk in docu-
ment d j any IR-style indexing technique
that represents a document as a vector of
weighted terms may be used. Most of the
times, the standard tfidf function is used
(see Salton and Buckley [1988]), defined as

tfidf (tk , d j) = #(tk , d j) · log
|Tr|

#Tr(tk)
, (1)

where #(tk , d j) denotes the number of
times tk occurs in d j , and #Tr(tk) denotes
the document frequency of term tk , that
is, the number of documents in Tr in
which tk occurs. This function embodies
the intuitions that (i) the more often a
term occurs in a document, the more it
is representative of its content, and (ii)
the more documents a term occurs in,
the less discriminating it is.5 Note that
this formula (as most other indexing
formulae) weights the importance of a
term to a document in terms of occurrence
considerations only, thereby deeming of
null importance the order in which the
terms occur in the document and the syn-
tactic role they play. In other words, the
semantics of a document is reduced to the
collective lexical semantics of the terms
that occur in it, thereby disregarding the
issue of compositional semantics (an ex-
ception are the representation techniques
used for FOIL [Cohen 1995a] and SLEEPING
EXPERTS [Cohen and Singer 1999]).

In order for the weights to fall in the
[0,1] interval and for the documents to
be represented by vectors of equal length,
the weights resulting from tfidf are often

5 There exist many variants of tfidf, that differ from
each other in terms of logarithms, normalization or
other correction factors. Formula 1 is just one of
the possible instances of this class; see Salton and
Buckley [1988] and Singhal et al. [1996] for varia-
tions on this theme.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

12 Sebastiani

normalized by cosine normalization, given
by

wkj = tfidf (tk , d j)√∑|T |
s=1(tfidf (ts, d j))2

. (2)

Although normalized tfidf is the most
popular one, other indexing functions
have also been used, including proba-
bilistic techniques [Gövert et al. 1999] or
techniques for indexing structured docu-
ments [Larkey and Croft 1996]. Functions
different from tfidf are especially needed
when Tr is not available in its entirety
from the start and #Tr(tk) cannot thus be
computed, as in adaptive filtering; in this
case, approximations of tfidf are usually
employed [Dagan et al. 1997, Section 4.3].

Before indexing, the removal of function
words (i.e., topic-neutral words such as ar-
ticles, prepositions, conjunctions, etc.) is
almost always performed (exceptions in-
clude Lewis et al. [1996], Nigam et al.
[2000], and Riloff [1995]).6 Concerning
stemming (i.e., grouping words that share
the same morphological root), its suitabil-
ity to TC is controversial. Although, simi-
larly to unsupervised term clustering (see
Section 5.5.1) of which it is an instance,
stemming has sometimes been reported
to hurt effectiveness (e.g., Baker and
McCallum [1998]), the recent tendency is
to adopt it, as it reduces both the dimen-
sionality of the term space (see Section 5.3)
and the stochastic dependence between
terms (see Section 6.2).

Depending on the application, either
the full text of the document or selected
parts of it are indexed. While the former
option is the rule, exceptions exist. For
instance, in a patent categorization ap-
plication Larkey [1999] indexed only the
title, the abstract, the first 20 lines of
the summary, and the section containing

6 One application of TC in which it would be inap-
propriate to remove function words is author identi-
fication for documents of disputed paternity. In fact,
as noted in Manning and Schütze [1999], page 589,
“it is often the ‘little’ words that give an author away
(for example, the relative frequencies of words like
because or though).”

the claims of novelty of the described in-
vention. This approach was made possi-
ble by the fact that documents describing
patents are structured. Similarly, when a
document title is available, one can pay
extra importance to the words it contains
[Apté et al. 1994; Cohen and Singer 1999;
Weiss et al. 1999]. When documents are
flat, identifying the most relevant part of
a document is instead a nonobvious task.

5.2. The Darmstadt Indexing Approach

The AIR/X system [Fuhr et al. 1991] oc-
cupies a special place in the literature on
indexing for TC. This system is the final
result of the AIR project, one of the most
important efforts in the history of TC:
spanning a duration of more than 10 years
[Knorz 1982; Tzeras and Hartmann 1993],
it has produced a system operatively em-
ployed since 1985 in the classification of
corpora of scientific literature of O(105)
documents and O(104) categories, and has
had important theoretical spin-offs in the
field of probabilistic indexing [Fuhr 1989;
Fuhr and Buckely 1991].7

The approach to indexing taken in
AIR/X is known as the Darmstadt In-
dexing Approach (DIA) [Fuhr 1985].
Here, “indexing” is used in the sense of
Section 3.1, that is, as using terms from
a controlled vocabulary, and is thus a
synonym of TC (the DIA was later ex-
tended to indexing with free terms [Fuhr
and Buckley 1991]). The idea that under-
lies the DIA is the use of a much wider
set of “features” than described in Sec-
tion 5.1. All other approaches mentioned
in this paper view terms as the dimen-
sions of the learning space, where terms
may be single words, stems, phrases, or
(see Sections 5.5.1 and 5.5.2) combina-
tions of any of these. In contrast, the DIA
considers properties (of terms, documents,

7 The AIR/X system, its applications (including the
AIR/PHYS system [Biebricher et al. 1988], an appli-
cation of AIR/X to indexing physics literature), and
its experiments have also been richly documented
in a series of papers and doctoral theses written in
German. The interested reader may consult Fuhr
et al. [1991] for a detailed bibliography.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 13

categories, or pairwise relationships am-
ong these) as basic dimensions of the
learning space. Examples of these are

—properties of a term tk : e.g. the idf of tk ;
—properties of the relationship between a

term tk and a document d j : for example,
the t f of tk in d j ; or the location (e.g., in
the title, or in the abstract) of tk within
d j ;

—properties of a document d j : for exam-
ple, the length of d j ;

—properties of a category ci: for example,
the training set generality of ci.

For each possible document-category pair,
the values of these features are collected
in a so-called relevance description vec-
tor ⃗rd(d j , ci). The size of this vector is
determined by the number of properties
considered, and is thus independent of
specific terms, categories, or documents
(for multivalued features, appropriate ag-
gregation functions are applied in order
to yield a single value to be included in
⃗rd(d j , ci)); in this way an abstraction from

specific terms, categories, or documents is
achieved.

The main advantage of this approach
is the possibility to consider additional
features that can hardly be accounted for
in the usual term-based approaches, for
example, the location of a term within a
document, or the certainty with which a
phrase was identified in a document. The
term-category relationship is described by
estimates, derived from the training set, of
the probability P (ci | tk) that a document
belongs to category ci, given that it con-
tains term tk (the DIA association factor).8
Relevance description vectors ⃗rd (dj , ci)
are then the final representations that
are used for the classification of document
d j under category ci.

The essential ideas of the DIA—
transforming the classification space by
means of abstraction and using a more de-
tailed text representation than the stan-
dard bag-of-words approach—have not

8 Association factors are called adhesion coefficients
in many early papers on TC; see Field [1975];
Robertson and Harding [1984].

been taken up by other researchers so
far. For new TC applications dealing with
structured documents or categorization of
Web pages, these ideas may become of in-
creasing importance.

5.3. Dimensionality Reduction

Unlike in text retrieval, in TC the high
dimensionality of the term space (i.e.,
the large value of |T |) may be problem-
atic. In fact, while typical algorithms used
in text retrieval (such as cosine match-
ing) can scale to high values of |T |, the
same does not hold of many sophisticated
learning algorithms used for classifier in-
duction (e.g., the LLSF algorithm of Yang
and Chute [1994]). Because of this, be-
fore classifier induction one often applies
a pass of dimensionality reduction (DR),
whose effect is to reduce the size of the
vector space from |T | to |T ′| ≪ |T |; the set
T ′ is called the reduced term set.

DR is also beneficial since it tends to re-
duce overfitting, that is, the phenomenon
by which a classifier is tuned also to
the contingent characteristics of the train-
ing data rather than just the constitu-
tive characteristics of the categories. Clas-
sifiers that overfit the training data are
good at reclassifying the data they have
been trained on, but much worse at clas-
sifying previously unseen data. Experi-
ments have shown that, in order to avoid
overfitting a number of training exam-
ples roughly proportional to the number
of terms used is needed; Fuhr and Buckley
[1991, page 235] have suggested that 50–
100 training examples per term may be
needed in TC tasks. This means that, if DR
is performed, overfitting may be avoided
even if a smaller amount of training exam-
ples is used. However, in removing terms
the risk is to remove potentially useful
information on the meaning of the docu-
ments. It is then clear that, in order to
obtain optimal (cost-)effectiveness, the re-
duction process must be performed with
care. Various DR methods have been pro-
posed, either from the information theory
or from the linear algebra literature, and
their relative merits have been tested by
experimentally evaluating the variation

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

14 Sebastiani

in effectiveness that a given classifier
undergoes after application of the function
to the term space.

There are two distinct ways of view-
ing DR, depending on whether the task is
performed locally (i.e., for each individual
category) or globally:

—local DR: for each category ci, a set T ′
i of

terms, with |T ′
i | ≪ |T |, is chosen for clas-

sification under ci (see Apté et al. [1994];
Lewis and Ringuette [1994]; Li and
Jain [1998]; Ng et al. [1997]; Sable and
Hatzivassiloglou [2000]; Schütze et al.
[1995], Wiener et al. [1995]). This means
that different subsets of d⃗ j are used
when working with the different cate-
gories. Typical values are 10 ≤ |T ′

i | ≤ 50.
—global DR: a set T ′ of terms, with

|T ′| ≪ |T |, is chosen for the classifica-
tion under all categories C = {c1, . . . , c|C|}
(see Caropreso et al. [2001]; Mladenić
[1998]; Yang [1999]; Yang and Pedersen
[1997]).

This distinction usually does not impact
on the choice of DR technique, since
most such techniques can be used (and
have been used) for local and global
DR alike (supervised DR techniques—see
Section 5.5.1—are exceptions to this rule).
In the rest of this section, we will assume
that the global approach is used, although
everything we will say also applies to the
local approach.

A second, orthogonal distinction may be
drawn in terms of the nature of the result-
ing terms:

—DR by term selection: T ′ is a subset
of T ;

—DR by term extraction: the terms in
T ′ are not of the same type of the
terms in T (e.g., if the terms in T are
words, the terms in T ′ may not be words
at all), but are obtained by combina-
tions or transformations of the original
ones.

Unlike in the previous distinction, these
two ways of doing DR are tackled by very
different techniques; we will address them
separately in the next two sections.

5.4. Dimensionality Reduction
by Term Selection

Given a predetermined integer r, tech-
niques for term selection (also called term
space reduction—TSR) attempt to select,
from the original set T , the set T ′ of
terms (with |T ′| ≪ |T |) that, when used
for document indexing, yields the highest
effectiveness. Yang and Pedersen [1997]
have shown that TSR may even result in
a moderate (≤5%) increase in effective-
ness, depending on the classifier, on the
aggressivity |T |

|T ′| of the reduction, and on
the TSR technique used.

Moulinier et al. [1996] have used a so-
called wrapper approach, that is, one in
which T ′ is identified by means of the
same learning method that will be used for
building the classifier [John et al. 1994].
Starting from an initial term set, a new
term set is generated by either adding
or removing a term. When a new term
set is generated, a classifier based on it
is built and then tested on a validation
set. The term set that results in the best
effectiveness is chosen. This approach has
the advantage of being tuned to the learn-
ing algorithm being used; moreover, if lo-
cal DR is performed, different numbers of
terms for different categories may be cho-
sen, depending on whether a category is
or is not easily separable from the others.
However, the sheer size of the space of dif-
ferent term sets makes its cost-prohibitive
for standard TC applications.

A computationally easier alternative is
the filtering approach [John et al. 1994],
that is, keeping the |T ′| ≪ |T | terms that
receive the highest score according to a
function that measures the “importance”
of the term for the TC task. We will explore
this solution in the rest of this section.

5.4.1. Document Frequency. A simple and
effective global TSR function is the docu-
ment frequency #Tr(tk) of a term tk , that is,
only the terms that occur in the highest
number of documents are retained. In a
series of experiments Yang and Pedersen
[1997] have shown that with #Tr(tk) it is
possible to reduce the dimensionality by a
factor of 10 with no loss in effectiveness (a

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 15

reduction by a factor of 100 bringing about
just a small loss).

This seems to indicate that the terms
occurring most frequently in the collection
are the most valuable for TC. As such, this
would seem to contradict a well-known
“law” of IR, according to which the terms
with low-to-medium document frequency
are the most informative ones [Salton and
Buckley 1988]. But these two results do
not contradict each other, since it is well
known (see Salton et al. [1975]) that the
large majority of the words occurring in
a corpus have a very low document fre-
quency; this means that by reducing the
term set by a factor of 10 using document
frequency, only such words are removed,
while the words from low-to-medium to
high document frequency are preserved.
Of course, stop words need to be removed
in advance, lest only topic-neutral words
are retained [Mladenić 1998].

Finally, note that a slightly more empir-
ical form of TSR by document frequency
is adopted by many authors, who remove
all terms occurring in at most x train-
ing documents (popular values for x range
from 1 to 3), either as the only form of DR
[Maron 1961; Ittner et al. 1995] or before
applying another more sophisticated form
[Dumais et al. 1998; Li and Jain 1998]. A
variant of this policy is removing all terms
that occur at most x times in the train-
ing set (e.g., Dagan et al. [1997]; Joachims
[1997]), with popular values for x rang-
ing from 1 (e.g., Baker and McCallum
[1998]) to 5 (e.g., Apté et al. [1994]; Cohen
[1995a]).

5.4.2. Other Information-Theoretic Term
Selection Functions. Other more sophis-
ticated information-theoretic functions
have been used in the literature, among
them the DIA association factor [Fuhr
et al. 1991], chi-square [Caropreso et al.
2001; Galavotti et al. 2000; Schütze et al.
1995; Sebastiani et al. 2000; Yang and
Pedersen 1997; Yang and Liu 1999],
NGL coefficient [Ng et al. 1997; Ruiz
and Srinivasan 1999], information gain
[Caropreso et al. 2001; Larkey 1998;
Lewis 1992a; Lewis and Ringuette 1994;
Mladenić 1998; Moulinier and Ganascia

1996; Yang and Pedersen 1997, Yang and
Liu 1999], mutual information [Dumais
et al. 1998; Lam et al. 1997; Larkey
and Croft 1996; Lewis and Ringuette
1994; Li and Jain 1998; Moulinier et al.
1996; Ruiz and Srinivasan 1999; Taira
and Haruno 1999; Yang and Pedersen
1997], odds ratio [Caropreso et al. 2001;
Mladenić 1998; Ruiz and Srinivasan
1999], relevancy score [Wiener et al.
1995], and GSS coefficient [Galavotti
et al. 2000]. The mathematical definitions
of these measures are summarized for
convenience in Table I.9 Here, probabil-
ities are interpreted on an event space
of documents (e.g., P (t̄k , ci) denotes the
probability that, for a random document
x, term tk does not occur in x and x
belongs to category ci), and are estimated
by counting occurrences in the training
set. All functions are specified “locally” to
a specific category ci; in order to assess the
value of a term tk in a “global,” category-
independent sense, either the sum
fsum(tk) =

∑|C|
i=1 f (tk , ci), or the weighted

sum fwsum(tk) =
∑|C|

i=1 P (ci) f (tk , ci), or the
maximum fmax(tk) = max|C|

i=1 f (tk , ci) of
their category-specific values f (tk , ci) are
usually computed.

These functions try to capture the in-
tuition that the best terms for ci are the
ones distributed most differently in the
sets of positive and negative examples of
ci. However, interpretations of this prin-
ciple vary across different functions. For
instance, in the experimental sciences χ2

is used to measure how the results of an
observation differ (i.e., are independent)
from the results expected according to an
initial hypothesis (lower values indicate
lower dependence). In DR we measure how
independent tk and ci are. The terms tk

9 For better uniformity Table I views all the TSR
functions of this section in terms of subjective proba-
bility. In some cases such as χ2(tk , ci) this is slightly
artificial, since this function is not usually viewed in
probabilistic terms. The formulae refer to the “local”
(i.e., category-specific) forms of the functions, which
again is slightly artificial in some cases. Note that
the NGL and GSS coefficients are here named after
their authors, since they had originally been given
names that might generate some confusion if used
here.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

16 Sebastiani

Table I. Main Functions Used for Term Space Reduction Purposes. Information Gain Is Also Known as
Expected Mutual Information, and Is Used Under This Name by Lewis [1992a, page 44] and

Larkey [1998]. In the RS(t k , ci) Formula, d Is a Constant Damping Factor.
Function Denoted by Mathematical form

DIA association factor z(tk , ci) P (ci | tk)

Information gain IG(tk , ci)
∑

c∈{ci ,c̄i }

∑

t∈{tk , t̄k }

P (t, c) · log
P (t, c)

P (t) · P (c)

Mutual information MI(tk , ci) log
P (tk , ci)

P (tk) · P (ci)

Chi-square χ2(tk , ci)
|Tr| · [P (tk , ci) · P (t̄k , c̄i) − P (tk , c̄i) · P (t̄k , ci)]2

P (tk) · P (t̄k) · P (ci) · P (c̄i)

NGL coefficient NGL(tk , ci)

√
|Tr| · [P (tk , ci) · P (t̄k , c̄i) − P (tk , c̄i) · P (t̄k , ci)]√

P (tk) · P (t̄k) · P (ci) · P (c̄i)

Relevancy score RS(tk , ci) log
P (tk | ci) + d
P (t̄k | c̄i) + d

Odds ratio OR(tk , ci)
P (tk | ci) · (1 − P (tk | c̄i))
(1 − P (tk | ci)) · P (tk | c̄i)

GSS coefficient GSS(tk , ci) P (tk , ci) · P (t̄k , c̄i) − P (tk , c̄i) · P (t̄k , ci)

with the lowest value for χ2(tk , ci) are thus
the most independent from ci; since we
are interested in the terms which are not,
we select the terms for which χ2(tk , ci) is
highest.

While each TSR function has its own
rationale, the ultimate word on its value
is the effectiveness it brings about. Var-
ious experimental comparisons of TSR
functions have thus been carried out
[Caropreso et al. 2001; Galavotti et al.
2000; Mladenić 1998; Yang and Pedersen
1997]. In these experiments most func-
tions listed in Table I (with the possible
exception of MI) have improved on the re-
sults of document frequency. For instance,
Yang and Pedersen [1997] have shown
that, with various classifiers and various
initial corpora, sophisticated techniques
such as IGsum(tk , ci) or χ2

max(tk , ci) can re-
duce the dimensionality of the term space
by a factor of 100 with no loss (or even
with a small increase) of effectiveness.
Collectively, the experiments reported in
the above-mentioned papers seem to in-
dicate that {ORsum, NGLsum, GSSmax} >
{χ2

max , IGsum} > {χ2
wavg} ≫ {MImax , MIwsum},

where “>” means “performs better than.”

However, it should be noted that these
results are just indicative, and that more
general statements on the relative mer-
its of these functions could be made only
as a result of comparative experiments
performed in thoroughly controlled condi-
tions and on a variety of different situ-
ations (e.g., different classifiers, different
initial corpora, . . .).

5.5. Dimensionality Reduction
by Term Extraction

Given a predetermined |T ′| ≪ |T |, term ex-
traction attempts to generate, from the
original set T , a set T ′ of “synthetic”
terms that maximize effectiveness. The
rationale for using synthetic (rather than
naturally occurring) terms is that, due
to the pervasive problems of polysemy,
homonymy, and synonymy, the original
terms may not be optimal dimensions
for document content representation.
Methods for term extraction try to solve
these problems by creating artificial terms
that do not suffer from them. Any term ex-
traction method consists in (i) a method
for extracting the new terms from the

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 17

old ones, and (ii) a method for convert-
ing the original document representa-
tions into new representations based on
the newly synthesized dimensions. Two
term extraction methods have been exper-
imented with in TC, namely term cluster-
ing and latent semantic indexing.

5.5.1. Term Clustering. Term clustering
tries to group words with a high degree of
pairwise semantic relatedness, so that the
groups (or their centroids, or a represen-
tative of them) may be used instead of the
terms as dimensions of the vector space.
Term clustering is different from term se-
lection, since the former tends to address
terms synonymous (or near-synonymous)
with other terms, while the latter targets
noninformative terms.10

Lewis [1992a] was the first to inves-
tigate the use of term clustering in TC.
The method he employed, called recipro-
cal nearest neighbor clustering, consists
in creating clusters of two terms that are
one the most similar to the other accord-
ing to some measure of similarity. His re-
sults were inferior to those obtained by
single-word indexing, possibly due to a dis-
appointing performance by the clustering
method: as Lewis [1992a, page 48] said,
“The relationships captured in the clus-
ters are mostly accidental, rather than the
systematic relationships that were hoped
for.”

Li and Jain [1998] viewed semantic
relatedness between words in terms of
their co-occurrence and co-absence within
training documents. By using this tech-
nique in the context of a hierarchical
clustering algorithm, they witnessed only
a marginal effectiveness improvement;
however, the small size of their experiment
(see Section 6.11) hardly allows any defini-
tive conclusion to be reached.

Both Lewis [1992a] and Li and Jain
[1998] are examples of unsupervised clus-
tering, since clustering is not affected by
the category labels attached to the docu-

10 Some term selection methods, such as wrapper
methods, also address the problem of redundancy.

ments. Baker and McCallum [1998] pro-
vided instead an example of supervised
clustering, as the distributional clustering
method they employed clusters together
those terms that tend to indicate the pres-
ence of the same category, or group of cat-
egories. Their experiments, carried out in
the context of a Naı̈ve Bayes classifier (see
Section 6.2), showed only a 2% effective-
ness loss with an aggressivity of 1,000,
and even showed some effectiveness im-
provement with less aggressive levels of
reduction. Later experiments by Slonim
and Tishby [2001] have confirmed the po-
tential of supervised clustering methods
for term extraction.

5.5.2. Latent Semantic Indexing. Latent se-
mantic indexing (LSI—[Deerwester et al.
1990]) is a DR technique developed in IR
in order to address the problems deriv-
ing from the use of synonymous, near-
synonymous, and polysemous words as
dimensions of document representations.
This technique compresses document vec-
tors into vectors of a lower-dimensional
space whose dimensions are obtained
as combinations of the original dimen-
sions by looking at their patterns of co-
occurrence. In practice, LSI infers the
dependence among the original terms
from a corpus and “wires” this dependence
into the newly obtained, independent di-
mensions. The function mapping original
vectors into new vectors is obtained by ap-
plying a singular value decomposition to
the matrix formed by the original docu-
ment vectors. In TC this technique is ap-
plied by deriving the mapping function
from the training set and then applying
it to training and test documents alike.

One characteristic of LSI is that the
newly obtained dimensions are not, unlike
in term selection and term clustering,
intuitively interpretable. However, they
work well in bringing out the “latent”
semantic structure of the vocabulary
used in the corpus. For instance, Schütze
et al. [1995, page 235] discussed the clas-
sification under category Demographic
shifts in the U.S. with economic impact of
a document that was indeed a positive

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

18 Sebastiani

test instance for the category, and that
contained, among others, the quite reveal-
ing sentence The nation grew to 249.6
million people in the 1980s as more
Americans left the industrial and ag-
ricultural heartlands for the South
and West. The classifier decision was in-
correct when local DR had been performed
by χ2-based term selection retaining the
top original 200 terms, but was correct
when the same task was tackled by
means of LSI. This well exemplifies
how LSI works: the above sentence does
not contain any of the 200 terms most
relevant to the category selected by χ2,
but quite possibly the words contained in
it have concurred to produce one or more
of the LSI higher-order terms that gener-
ate the document space of the category.
As Schütze et al. [1995, page 230] put it,
“if there is a great number of terms which
all contribute a small amount of critical
information, then the combination of evi-
dence is a major problem for a term-based
classifier.” A drawback of LSI, though, is
that if some original term is particularly
good in itself at discriminating a category,
that discrimination power may be lost in
the new vector space.

Wiener et al. [1995] used LSI in two
alternative ways: (i) for local DR, thus
creating several category-specific LSI
representations, and (ii) for global DR,
thus creating a single LSI representa-
tion for the entire category set. Their
experiments showed the former approach
to perform better than the latter, and
both approaches to perform better than
simple TSR based on Relevancy Score
(see Table I).

Schütze et al. [1995] experimentally
compared LSI-based term extraction with
χ2-based TSR using three different clas-
sifier learning techniques (namely, linear
discriminant analysis, logistic regression,
and neural networks). Their experiments
showed LSI to be far more effective than
χ2 for the first two techniques, while both
methods performed equally well for the
neural network classifier.

For other TC works that have used
LSI or similar term extraction techniques,
see Hull [1994], Li and Jain [1998],

Schütze [1998], Weigend et al. [1999], and
Yang [1995].

6. INDUCTIVE CONSTRUCTION
OF TEXT CLASSIFIERS

The inductive construction of text clas-
sifiers has been tackled in a variety of
ways. Here we will deal only with the
methods that have been most popular
in TC, but we will also briefly mention
the existence of alternative, less standard
approaches.

We start by discussing the general
form that a text classifier has. Let us
recall from Section 2.4 that there are
two alternative ways of viewing classi-
fication: “hard” (fully automated) clas-
sification and ranking (semiautomated)
classification.

The inductive construction of a ranking
classifier for category ci ∈ C usually con-
sists in the definition of a function CSVi :
D→ [0, 1] that, given a document d j , re-
turns a categorization status value for it,
that is, a number between 0 and 1 which,
roughly speaking, represents the evidence
for the fact that d j ∈ ci. Documents are
then ranked according to their CSVi value.
This works for “document-ranking TC”;
“category-ranking TC” is usually tackled
by ranking, for a given document d j , its
CSVi scores for the different categories in
C = {c1, . . . , c|C|}.

The CSVi function takes up differ-
ent meanings according to the learn-
ing method used: for instance, in the
“Naı̈ve Bayes” approach of Section 6.2
CSVi(d j) is defined in terms of a proba-
bility, whereas in the “Rocchio” approach
discussed in Section 6.7 CSVi(d j) is a mea-
sure of vector closeness in |T |-dimensional
space.

The construction of a “hard” classi-
fier may follow two alternative paths.
The former consists in the definition of
a function CSVi : D→ {T, F }. The lat-
ter consists instead in the definition of
a function CSVi : D→ [0, 1], analogous
to the one used for ranking classification,
followed by the definition of a threshold
τi such that CSVi(d j) ≥ τi is interpreted

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 19

as T while CSVi(d j) < τi is interpreted
as F .11

The definition of thresholds will be the
topic of Section 6.1. In Sections 6.2 to 6.12
we will instead concentrate on the defini-
tion of CSVi, discussing a number of ap-
proaches that have been applied in the TC
literature. In general we will assume we
are dealing with “hard” classification; it
will be evident from the context how and
whether the approaches can be adapted to
ranking classification. The presentation of
the algorithms will be mostly qualitative
rather than quantitative, that is, will fo-
cus on the methods for classifier learning
rather than on the effectiveness and ef-
ficiency of the classifiers built by means
of them; this will instead be the focus of
Section 7.

6.1. Determining Thresholds

There are various policies for determin-
ing the threshold τi, also depending on the
constraints imposed by the application.
The most important distinction is whether
the threshold is derived analytically or
experimentally.

The former method is possible only in
the presence of a theoretical result that in-
dicates how to compute the threshold that
maximizes the expected value of the ef-
fectiveness function [Lewis 1995a]. This is
typical of classifiers that output probabil-
ity estimates of the membership of d j in ci
(see Section 6.2) and whose effectiveness is
computed by decision-theoretic measures
such as utility (see Section 7.1.3); we thus
defer the discussion of this policy (which
is called probability thresholding in Lewis
[1995a]) to Section 7.1.3.

When such a theoretical result is not
known, one has to revert to the latter
method, which consists in testing different
values for τi on a validation set and choos-
ing the value which maximizes effective-
ness. We call this policy CSV thresholding

11 Alternative methods are possible, such as train-
ing a classifier for which some standard, predefined
value such as 0 is the threshold. For ease of exposi-
tion we will not discuss them.

[Cohen and Singer 1999; Schapire et al.
1998; Wiener et al. 1995]; it is also called
Scut in Yang [1999]. Different τi ’s are typ-
ically chosen for the different ci ’s.

A second, popular experimental pol-
icy is proportional thresholding [Iwayama
and Tokunaga 1995; Larkey 1998; Lewis
1992a; Lewis and Ringuette 1994; Wiener
et al. 1995], also called Pcut in Yang
[1999]. This policy consists in choosing
the value of τi for which gVa(ci) is clos-
est to gTr(ci), and embodies the principle
that the same percentage of documents of
both training and test set should be clas-
sified under ci. For obvious reasons, this
policy does not lend itself to document-
pivoted TC.

Sometimes, depending on the applica-
tion, a fixed thresholding policy (a.k.a.
“k-per-doc” thresholding [Lewis 1992a] or
Rcut [Yang 1999]) is applied, whereby it is
stipulated that a fixed number k of cate-
gories, equal for all d j ’s, are to be assigned
to each document d j . This is often used,
for instance, in applications of TC to au-
tomated document indexing [Field 1975;
Lam et al. 1999]. Strictly speaking, how-
ever, this is not a thresholding policy in the
sense defined at the beginning of Section 6,
as it might happen that d ′ is classified un-
der ci, d ′′ is not, and CSVi(d ′) < CSVi(d ′′).
Quite clearly, this policy is mostly at home
with document-pivoted TC. However, it
suffers from a certain coarseness, as the
fact that k is equal for all documents (nor
could this be otherwise) allows no fine-
tuning.

In his experiments Lewis [1992a] found
the proportional policy to be superior to
probability thresholding when microaver-
aged effectiveness was tested but slightly
inferior with macroaveraging (see Section
7.1.1). Yang [1999] found instead CSV
thresholding to be superior to proportional
thresholding (possibly due to her category-
specific optimization on a validation set),
and found fixed thresholding to be con-
sistently inferior to the other two poli-
cies. The fact that these latter results have
been obtained across different classifiers
no doubt reinforces them.

In general, aside from the considera-
tions above, the choice of the thresholding

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

20 Sebastiani

policy may also be influenced by the
application; for instance, in applying a
text classifier to document indexing for
Boolean systems a fixed thresholding pol-
icy might be chosen, while a proportional
or CSV thresholding method might be cho-
sen for Web page classification under hier-
archical catalogues.

6.2. Probabilistic Classifiers

Probabilistic classifiers (see Lewis [1998]
for a thorough discussion) view CSVi(d j)
in terms of P (ci|d⃗ j), that is, the proba-
bility that a document represented by a
vector d⃗ j = ⟨w1 j , . . . , w|T | j ⟩ of (binary or
weighted) terms belongs to ci, and com-
pute this probability by an application of
Bayes’ theorem, given by

P (ci | d⃗ j) = P (ci)P (d⃗ j | ci)
P (d⃗ j)

. (3)

In (3) the event space is the space of docu-
ments: P (d⃗ j) is thus the probability that a
randomly picked document has vector d⃗ j
as its representation, and P (ci) the prob-
ability that a randomly picked document
belongs to ci.

The estimation of P (d⃗ j | ci) in (3) is
problematic, since the number of possible
vectors d⃗ j is too high (the same holds for
P (d⃗ j), but for reasons that will be clear
shortly this will not concern us). In or-
der to alleviate this problem it is com-
mon to make the assumption that any two
coordinates of the document vector are,
when viewed as random variables, statis-
tically independent of each other; this in-
dependence assumption is encoded by the
equation

P (d⃗ j | ci) =
|T |∏

k=1

P (wkj | ci). (4)

Probabilistic classifiers that use this as-
sumption are called Naı̈ve Bayes clas-
sifiers, and account for most of the
probabilistic approaches to TC in the lit-
erature (see Joachims [1998]; Koller and

Sahami [1997]; Larkey and Croft [1996];
Lewis [1992a]; Lewis and Gale [1994];
Li and Jain [1998]; Robertson and
Harding [1984]). The “naı̈ve” character of
the classifier is due to the fact that usu-
ally this assumption is, quite obviously,
not verified in practice.

One of the best-known Naı̈ve Bayes ap-
proaches is the binary independence clas-
sifier [Robertson and Sparck Jones 1976],
which results from using binary-valued
vector representations for documents. In
this case, if we write pki as short for
P (wkx = 1 | ci), the P (wkj | ci) factors of
(4) may be written as

P (wkj | ci) = pwkj
ki (1 − pki)1−wkj

=
(

pki

1 − pki

)wkj

(1 − pki). (5)

We may further observe that in TC the
document space is partitioned into two
categories,12 ci and its complement c̄i, such
that P (c̄i | d⃗ j) = 1 − P (ci | d⃗ j). If we plug
in (4) and (5) into (3) and take logs we
obtain

log P (ci | d⃗ j)

= log P (ci) +
|T |∑

k=1

wkj log
pki

1 − pki

+
|T |∑

k=1

log(1 − pki) − log P (d⃗ j) (6)

log(1 − P (ci | d⃗ j))

= log(1 − P (ci)) +
|T |∑

k=1

wkj log
pkī

1 − pkī

+
|T |∑

k=1

log(1 − pkī) − log P (d⃗ j), (7)

12 Cooper [1995] has pointed out that in this case
the full independence assumption of (4) is not ac-
tually made in the Naı̈ve Bayes classifier; the as-
sumption needed here is instead the weaker linked
dependence assumption, which may be written as
P (d⃗ j | ci)
P (d⃗ j | c̄i)

=
∏|T |

k=1
P (wkj | ci)
P (wkj | c̄i)

.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 21

where we write pkī as short for
P (wkx = 1 | c̄i). We may convert (6) and (7)
into a single equation by subtracting com-
ponentwise (7) from (6), thus obtaining

log
P (ci | d⃗ j)

1 − P (ci | d⃗ j)

= log
P (ci)

1 − P (ci)
+

|T |∑

k=1

wkj log
pki(1 − pkī)
pkī(1 − pki)

+
|T |∑

k=1

log
1 − pki

1 − pkī
. (8)

Note that P (ci | d⃗ j)
1−P (ci | d⃗ j)

is an increasing mono-
tonic function of P (ci | d⃗ j), and may thus
be used directly as CSVi(d j). Note also
that log P (ci)

1−P (ci)
and

∑|T |
k=1 log 1−pki

1−pkī
are

constant for all documents, and may
thus be disregarded.13 Defining a clas-
sifier for category ci thus basically re-
quires estimating the 2|T | parameters
{p1i, p1ī, . . . , p|T |i, p|T |ī} from the training
data, which may be done in the obvious
way. Note that in general the classifica-
tion of a given document does not re-
quire one to compute a sum of |T | factors,
as the presence of

∑|T |
k=1 wkj log pki (1−pkī)

pkī (1−pki)
would imply; in fact, all the factors for
which wkj = 0 may be disregarded, and
this accounts for the vast majority of them,
since document vectors are usually very
sparse.

The method we have illustrated is just
one of the many variants of the Naı̈ve
Bayes approach, the common denomina-
tor of which is (4). A recent paper by Lewis
[1998] is an excellent roadmap on the
various directions that research on Naı̈ve
Bayes classifiers has taken; among these
are the ones aiming

—to relax the constraint that document
vectors should be binary-valued. This

13 This is not true, however, if the “fixed threshold-
ing” method of Section 6.1 is adopted. In fact, for a
fixed document d j the first and third factor in the for-
mula above are different for different categories, and
may therefore influence the choice of the categories
under which to file d j .

looks natural, given that weighted in-
dexing techniques (see Fuhr [1989];
Salton and Buckley [1988]) accounting
for the “importance” of tk for d j play a
key role in IR.

—to introduce document length normal-
ization. The value of log P (ci | d⃗ j)

1−P (ci | d⃗ j)
tends

to be more extreme (i.e., very high
or very low) for long documents (i.e.,
documents such that wkj = 1 for many
values of k), irrespectively of their
semantic relatedness to ci, thus call-
ing for length normalization. Taking
length into account is easy in non-
probabilistic approaches to classifica-
tion (see Section 6.7), but is problematic
in probabilistic ones (see Lewis [1998],
Section 5). One possible answer is to
switch from an interpretation of Naı̈ve
Bayes in which documents are events to
one in which terms are events [Baker
and McCallum 1998; McCallum et al.
1998; Chakrabarti et al. 1998a; Guthrie
et al. 1994]. This accounts for document
length naturally but, as noted by Lewis
[1998], has the drawback that differ-
ent occurrences of the same word within
the same document are viewed as in-
dependent, an assumption even more
implausible than (4).

—to relax the independence assumption.
This may be the hardest route to follow,
since this produces classifiers of higher
computational cost and characterized
by harder parameter estimation prob-
lems [Koller and Sahami 1997]. Earlier
efforts in this direction within proba-
bilistic text search (e.g., vanRijsbergen
[1977]) have not shown the perfor-
mance improvements that were hoped
for. Recently, the fact that the binary in-
dependence assumption seldom harms
effectiveness has also been given some
theoretical justification [Domingos and
Pazzani 1997].

The quotation of text search in the last
paragraph is not casual. Unlike other
types of classifiers, the literature on prob-
abilistic classifiers is inextricably inter-
twined with that on probabilistic search
systems (see Crestani et al. [1998] for a

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

22 Sebastiani

Fig. 2. A decision tree equivalent to the DNF rule of Figure 1. Edges are labeled
by terms and leaves are labeled by categories (underlining denotes negation).

review), since these latter attempt to de-
termine the probability that a document
falls in the category denoted by the query,
and since they are the only search systems
that take relevance feedback, a notion es-
sentially involving supervised learning, as
central.

6.3. Decision Tree Classifiers

Probabilistic methods are quantitative
(i.e., numeric) in nature, and as such
have sometimes been criticized since, ef-
fective as they may be, they are not eas-
ily interpretable by humans. A class of
algorithms that do not suffer from this
problem are symbolic (i.e., nonnumeric)
algorithms, among which inductive rule
learners (which we will discuss in Sec-
tion 6.4) and decision tree learners are the
most important examples.

A decision tree (DT) text classifier (see
Mitchell [1996], Chapter 3) is a tree in
which internal nodes are labeled by terms,
branches departing from them are labeled
by tests on the weight that the term has in
the test document, and leafs are labeled by
categories. Such a classifier categorizes a
test document d j by recursively testing for

the weights that the terms labeling the in-
ternal nodes have in vector d⃗ j , until a leaf
node is reached; the label of this node is
then assigned to d j . Most such classifiers
use binary document representations, and
thus consist of binary trees. An example
DT is illustrated in Figure 2.

There are a number of standard pack-
ages for DT learning, and most DT ap-
proaches to TC have made use of one such
package. Among the most popular ones are
ID3 (used by Fuhr et al. [1991]), C4.5 (used
by Cohen and Hirsh [1998], Cohen and
Singer [1999], Joachims [1998], and Lewis
and Catlett [1994]), and C5 (used by Li
and Jain [1998]). TC efforts based on ex-
perimental DT packages include Dumais
et al. [1998], Lewis and Ringuette [1994],
and Weiss et al. [1999].

A possible method for learning a DT
for category ci consists in a “divide and
conquer” strategy of (i) checking whether
all the training examples have the same
label (either ci or c̄i); (ii) if not, select-
ing a term tk , partitioning Tr into classes
of documents that have the same value
for tk , and placing each such class in a
separate subtree. The process is recur-
sively repeated on the subtrees until each

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 23

leaf of the tree so generated contains train-
ing examples assigned to the same cate-
gory ci, which is then chosen as the label
for the leaf. The key step is the choice of
the term tk on which to operate the parti-
tion, a choice which is generally made ac-
cording to an information gain or entropy
criterion. However, such a “fully grown”
tree may be prone to overfitting, as some
branches may be too specific to the train-
ing data. Most DT learning methods thus
include a method for growing the tree and
one for pruning it, that is, for removing
the overly specific branches. Variations on
this basic schema for DT learning abound
[Mitchell 1996, Section 3].

DT text classifiers have been used either
as the main classification tool [Fuhr et al.
1991; Lewis and Catlett 1994; Lewis and
Ringuette 1994], or as baseline classifiers
[Cohen and Singer 1999; Joachims 1998],
or as members of classifier committees [Li
and Jain 1998; Schapire and Singer 2000;
Weiss et al. 1999].

6.4. Decision Rule Classifiers

A classifier for category ci built by an
inductive rule learning method consists
of a DNF rule, that is, of a conditional
rule with a premise in disjunctive normal
form (DNF), of the type illustrated in
Figure 1.14 The literals (i.e., possibly
negated keywords) in the premise denote
the presence (nonnegated keyword) or ab-
sence (negated keyword) of the keyword
in the test document d j , while the clause
head denotes the decision to classify d j
under ci. DNF rules are similar to DTs
in that they can encode any Boolean func-
tion. However, an advantage of DNF rule
learners is that they tend to generate more
compact classifiers than DT learners.

Rule learning methods usually attempt
to select from all the possible covering
rules (i.e., rules that correctly classify
all the training examples) the “best” one

14 Many inductive rule learning algorithms build
decision lists (i.e., arbitrarily nested if-then-else
clauses) instead of DNF rules; since the former may
always be rewritten as the latter, we will disregard
the issue.

according to some minimality criterion.
While DTs are typically built by a top-
down, “divide-and-conquer” strategy, DNF
rules are often built in a bottom-up fash-
ion. Initially, every training example d j is
viewed as a clause η1, . . . , ηn → γi, where
η1, . . . , ηn are the terms contained in d j
and γi equals ci or c̄i according to whether
d j is a positive or negative example of ci.
This set of clauses is already a DNF clas-
sifier for ci, but obviously scores high in
terms of overfitting. The learner applies
then a process of generalization in which
the rule is simplified through a series
of modifications (e.g., removing premises
from clauses, or merging clauses) that
maximize its compactness while at the
same time not affecting the “covering”
property of the classifier. At the end of
this process, a “pruning” phase similar in
spirit to that employed in DTs is applied,
where the ability to correctly classify all
the training examples is traded for more
generality.

DNF rule learners vary widely in terms
of the methods, heuristics and criteria
employed for generalization and prun-
ing. Among the DNF rule learners that
have been applied to TC are CHARADE
[Moulinier and Ganascia 1996], DL-ESC
[Li and Yamanishi 1999], RIPPER [Cohen
1995a; Cohen and Hirsh 1998; Cohen and
Singer 1999], SCAR [Moulinier et al. 1996],
and SWAP-1 [Apté 1994].

While the methods above use rules
of propositional logic (PL), research has
also been carried out using rules of first-
order logic (FOL), obtainable through
the use of inductive logic programming
methods. Cohen [1995a] has extensively
compared PL and FOL learning in TC
(for instance, comparing the PL learner
RIPPER with its FOL version FLIPPER), and
has found that the additional represen-
tational power of FOL brings about only
modest benefits.

6.5. Regression Methods

Various TC efforts have used regression
models (see Fuhr and Pfeifer [1994]; Ittner
et al. [1995]; Lewis and Gale [1994];
Schütze et al. [1995]). Regression denotes

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

24 Sebastiani

the approximation of a real-valued (in-
stead than binary, as in the case of clas-
sification) function !̆ by means of a func-
tion ! that fits the training data [Mitchell
1996, page 236]. Here we will describe one
such model, the Linear Least-Squares Fit
(LLSF) applied to TC by Yang and Chute
[1994]. In LLSF, each document d j has
two vectors associated to it: an input vec-
tor I (d j) of |T | weighted terms, and an
output vector O(d j) of |C| weights rep-
resenting the categories (the weights for
this latter vector are binary for training
documents, and are nonbinary CSV ′s for
test documents). Classification may thus
be seen as the task of determining an out-
put vector O(d j) for test document d j ,
given its input vector I (d j); hence, build-
ing a classifier boils down to computing
a |C| × |T | matrix M̂ such that M̂I(d j) =
O(d j).

LLSF computes the matrix from the
training data by computing a linear least-
squares fit that minimizes the error on the
training set according to the formula M̂ =
arg minM ∥MI − O∥F , where arg minM (x)
stands as usual for the M for which x is
minimum, ∥V ∥F

def=
√∑|C|

i=1
∑|T |

j=1 v2
i j rep-

resents the so-called Frobenius norm of a
|C| × |T | matrix, I is the |T | × |Tr| matrix
whose columns are the input vectors of the
training documents, and O is the |C| × |Tr|
matrix whose columns are the output vec-
tors of the training documents. The M̂ ma-
trix is usually computed by performing a
singular value decomposition on the train-
ing set, and its generic entry m̂ik repre-
sents the degree of association between
category ci and term tk .

The experiments of Yang and Chute
[1994] and Yang and Liu [1999] indicate
that LLSF is one of the most effective text
classifiers known to date. One of its disad-
vantages, though, is that the cost of com-
puting the M̂ matrix is much higher than
that of many other competitors in the TC
arena.

6.6. On-Line Methods

A linear classifier for category ci is a vec-
tor c⃗i = ⟨w1i, . . . , w|T |i⟩ belonging to the

same |T |-dimensional space in which doc-
uments are also represented, and such
that CSVi(d j) corresponds to the dot
product

∑|T |
k=1 wkiwkj of d⃗ j and c⃗i. Note

that when both classifier and document
weights are cosine-normalized (see (2)),
the dot product between the two vec-
tors corresponds to their cosine similarity,
that is:

S(ci, d j) = cos(α)

=
∑|T |

k=1 wki · wkj√∑|T |
k=1 w2

ki ·
√∑|T |

k=1 w2
k j

,

which represents the cosine of the angle
α that separates the two vectors. This is
the similarity measure between query and
document computed by standard vector-
space IR engines, which means in turn
that once a linear classifier has been built,
classification can be performed by invok-
ing such an engine. Practically all search
engines have a dot product flavor to them,
and can therefore be adapted to doing TC
with a linear classifier.

Methods for learning linear classifiers
are often partitioned in two broad classes,
batch methods and on-line methods.

Batch methods build a classifier by ana-
lyzing the training set all at once. Within
the TC literature, one example of a batch
method is linear discriminant analysis,
a model of the stochastic dependence be-
tween terms that relies on the covari-
ance matrices of the categories [Hull 1994;
Schütze et al. 1995]. However, the fore-
most example of a batch method is the
Rocchio method; because of its importance
in the TC literature, this will be discussed
separately in Section 6.7. In this section
we will instead concentrate on on-line
methods.

On-line (a.k.a. incremental) methods
build a classifier soon after examining
the first training document, and incre-
mentally refine it as they examine new
ones. This may be an advantage in the
applications in which Tr is not avail-
able in its entirety from the start, or in
which the “meaning” of the category may
change in time, as for example, in adaptive

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 25

filtering. This is also apt to applications
(e.g., semiautomated classification, adap-
tive filtering) in which we may expect the
user of a classifier to provide feedback on
how test documents have been classified,
as in this case further training may be per-
formed during the operating phase by ex-
ploiting user feedback.

A simple on-line method is the per-
ceptron algorithm, first applied to TC by
Schütze et al. [1995] and Wiener et al.
[1995], and subsequently used by Dagan
et al. [1997] and Ng et al. [1997]. In this al-
gorithm, the classifier for ci is first initial-
ized by setting all weights wki to the same
positive value. When a training example
d j (represented by a vector d⃗ j of binary
weights) is examined, the classifier built
so far classifies it. If the result of the clas-
sification is correct, nothing is done, while
if it is wrong, the weights of the classifier
are modified: if d j was a positive exam-
ple of ci, then the weights wki of “active
terms” (i.e., the terms tk such that wkj = 1)
are “promoted” by increasing them by a
fixed quantity α > 0 (called learning rate),
while if d j was a negative example of ci
then the same weights are “demoted” by
decreasing them by α. Note that when the
classifier has reached a reasonable level of
effectiveness, the fact that a weight wki is
very low means that tk has negatively con-
tributed to the classification process so far,
and may thus be discarded from the repre-
sentation. We may then see the perceptron
algorithm (as all other incremental learn-
ing methods) as allowing for a sort of “on-
the-fly term space reduction” [Dagan et al.
1997, Section 4.4]. The perceptron classi-
fier has shown a good effectiveness in all
the experiments quoted above.

The perceptron is an additive weight-
updating algorithm. A multiplicative
variant of it is POSITIVE WINNOW [Dagan
et al. 1997], which differs from perceptron
because two different constants α1 > 1 and
0 < α2 < 1 are used for promoting and de-
moting weights, respectively, and because
promotion and demotion are achieved by
multiplying, instead of adding, by α1 and
α2. BALANCED WINNOW [Dagan et al. 1997]
is a further variant of POSITIVE WINNOW, in
which the classifier consists of two weights

w+
ki and w−

ki for each term tk ; the final
weight wki used in computing the dot prod-
uct is the difference w+

ki − w−
ki. Following

the misclassification of a positive in-
stance, active terms have their w+

ki weight
promoted and their w−

ki weight demoted,
whereas in the case of a negative instance
it is w+

ki that gets denoted while w−
ki gets

promoted (for the rest, promotions and
demotions are as in POSITIVE WINNOW).
BALANCED WINNOW allows negative wki
weights, while in the perceptron and in
POSITIVE WINNOW the wki weights are al-
ways positive. In experiments conducted
by Dagan et al. [1997], POSITIVE WINNOW
showed a better effectiveness than per-
ceptron but was in turn outperformed by
(Dagan et al.’s own version of) BALANCED
WINNOW.

Other on-line methods for building text
classifiers are WIDROW-HOFF, a refinement
of it called EXPONENTIATED GRADIENT (both
applied for the first time to TC in [Lewis
et al. 1996]) and SLEEPING EXPERTS [Cohen
and Singer 1999], a version of BALANCED
WINNOW. While the first is an additive
weight-updating algorithm, the second
and third are multiplicative. Key differ-
ences with the previously described al-
gorithms are that these three algorithms
(i) update the classifier not only after mis-
classifying a training example, but also af-
ter classifying it correctly, and (ii) update
the weights corresponding to all terms (in-
stead of just active ones).

Linear classifiers lend themselves to
both category-pivoted and document-
pivoted TC. For the former the classifier
c⃗i is used, in a standard search engine,
as a query against the set of test docu-
ments, while for the latter the vector d⃗ j
representing the test document is used
as a query against the set of classifiers
{c⃗1, . . . , c⃗|C|}.

6.7. The Rocchio Method

Some linear classifiers consist of an ex-
plicit profile (or prototypical document)
of the category. This has obvious advan-
tages in terms of interpretability, as such
a profile is more readily understandable
by a human than, say, a neural network

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

26 Sebastiani

classifier. Learning a linear classifier is of-
ten preceded by local TSR; in this case, a
profile of ci is a weighted list of the terms
whose presence or absence is most useful
for discriminating ci.

The Rocchio method is used for induc-
ing linear, profile-style classifiers. It re-
lies on an adaptation to TC of the well-
known Rocchio’s formula for relevance
feedback in the vector-space model, and
it is perhaps the only TC method rooted
in the IR tradition rather than in the
ML one. This adaptation was first pro-
posed by Hull [1994], and has been used
by many authors since then, either as
an object of research in its own right
[Ittner et al. 1995; Joachims 1997; Sable
and Hatzivassiloglou 2000; Schapire et al.
1998; Singhal et al. 1997], or as a base-
line classifier [Cohen and Singer 1999;
Galavotti et al. 2000; Joachims 1998;
Lewis et al. 1996; Schapire and Singer
2000; Schütze et al. 1995], or as a mem-
ber of a classifier committee [Larkey and
Croft 1996] (see Section 6.11).

Rocchio’s method computes a classi-
fier c⃗i = ⟨w1i, . . . , w|T |i⟩ for category ci by
means of the formula

wki = β ·
∑

{d j ∈POSi}

wkj

|POSi|
−

γ ·
∑

{d j ∈NEGi}

wkj

|NEGi|
,

where wkj is the weight of tk in document
d j , POSi = {d j ∈ Tr | !̆(d j , ci) = T }, and
NEGi = {d j ∈ Tr | !̆(d j , ci) = F }. In this
formula, β and γ are control parameters
that allow setting the relative importance
of positive and negative examples. For
instance, if β is set to 1 and γ to 0 (as
in Dumais et al. [1998]; Hull [1994];
Joachims [1998]; Schütze et al. [1995]),
the profile of ci is the centroid of its pos-
itive training examples. A classifier built
by means of the Rocchio method rewards
the closeness of a test document to the
centroid of the positive training examples,
and its distance from the centroid of the
negative training examples. The role of
negative examples is usually deempha-

sized, by setting β to a high value and γ to
a low one (e.g., Cohen and Singer [1999],
Ittner et al. [1995], and Joachims [1997]
use β = 16 and γ = 4).

This method is quite easy to implement,
and is also quite efficient, since learning
a classifier basically comes down to aver-
aging weights. In terms of effectiveness,
instead, a drawback is that if the docu-
ments in the category tend to occur in
disjoint clusters (e.g., a set of newspaper
articles lebeled with the Sports category
and dealing with either boxing or rock-
climbing), such a classifier may miss most
of them, as the centroid of these docu-
ments may fall outside all of these clusters
(see Figure 3(a)). More generally, a classi-
fier built by the Rocchio method, as all lin-
ear classifiers, has the disadvantage that
it divides the space of documents linearly.
This situation is graphically depicted in
Figure 3(a), where documents are classi-
fied within ci if and only if they fall within
the circle. Note that even most of the pos-
itive training examples would not be clas-
sified correctly by the classifier.

6.7.1. Enhancements to the Basic Rocchio
Framework. One issue in the application of
the Rocchio formula to profile extraction
is whether the set NEGi should be con-
sidered in its entirety, or whether a well-
chosen sample of it, such as the set NPOSi
of near-positives (defined as “the most pos-
itive among the negative training exam-
ples”), should be selected from it, yielding

wki = β ·
∑

{d j ∈POSi}

wkj

|POSi|
−

γ ·
∑

{d j ∈NPOSi}

wkj

|NPOSi|
.

The
∑

{d j ∈NPOSi}
wkj

|NPOSi | factor is more sig-
nificant than

∑
{d j ∈NEGi}

wkj
|NEGi | , since near-

positives are the most difficult documents
to tell apart from the positives. Using
near-positives corresponds to the query
zoning method proposed for IR by Singhal
et al. [1997]. This method originates from
the observation that, when the original

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 27

Fig. 3. A comparison between the TC behavior of (a) the Rocchio classifier, and
(b) the k-NN classifier. Small crosses and circles denote positive and negative
training instances, respectively. The big circles denote the “influence area” of
the classifier. Note that, for ease of illustration, document similarities are here
viewed in terms of Euclidean distance rather than, as is more common, in terms
of dot product or cosine.

Rocchio formula is used for relevance
feedback in IR, near-positives tend to
be used rather than generic negatives, as
the documents on which user judgments
are available are among the ones that
had scored highest in the previous rank-
ing. Early applications of the Rocchio for-
mula to TC (e.g., Hull [1994]; Ittner et al.
[1995]) generally did not make a distinc-
tion between near-positives and generic
negatives. In order to select the near-
positives Schapire et al. [1998] issue a
query, consisting of the centroid of the pos-
itive training examples, against a docu-
ment base consisting of the negative train-
ing examples; the top-ranked ones are the
most similar to this centroid, and are then
the near-positives. Wiener et al. [1995] in-
stead equate the near-positives of ci to
the positive examples of the sibling cate-
gories of ci, as in the application they work
on (TC with hierarchically organized cat-
egory sets) the notion of a “sibling cate-
gory of ci” is well defined. A similar policy
is also adopted by Ng et al. [1997], Ruiz
and Srinivasan [1999], and Weigend et al.
[1999].

By using query zoning plus other en-
hancements (TSR, statistical phrases, and
a method called dynamic feedback op-
timization), Schapire et al. [1998] have
found that a Rocchio classifier can achieve

an effectiveness comparable to that of
a state-of-the-art ML method such as
“boosting” (see Section 6.11.1) while being
60 times quicker to train. These recent
results will no doubt bring about a re-
newed interest for the Rocchio classifier,
previously considered an underperformer
[Cohen and Singer 1999; Joachims 1998;
Lewis et al. 1996; Schütze et al. 1995; Yang
1999].

6.8. Neural Networks

A neural network (NN) text classifier is a
network of units, where the input units
represent terms, the output unit(s) repre-
sent the category or categories of interest,
and the weights on the edges connecting
units represent dependence relations. For
classifying a test document d j , its term
weights wkj are loaded into the input units;
the activation of these units is propa-
gated forward through the network, and
the value of the output unit(s) determines
the categorization decision(s). A typical
way of training NNs is backpropagation,
whereby the term weights of a training
document are loaded into the input units,
and if a misclassification occurs the error
is “backpropagated” so as to change the pa-
rameters of the network and eliminate or
minimize the error.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

28 Sebastiani

The simplest type of NN classifier is
the perceptron [Dagan et al. 1997; Ng
et al. 1997], which is a linear classifier and
as such has been extensively discussed
in Section 6.6. Other types of linear NN
classifiers implementing a form of logis-
tic regression have also been proposed
and tested by Schütze et al. [1995] and
Wiener et al. [1995], yielding very good
effectiveness.

A nonlinear NN [Lam and Lee 1999;
Ruiz and Srinivasan 1999; Schütze et al.
1995; Weigend et al. 1999; Wiener et al.
1995; Yang and Liu 1999] is instead a net-
work with one or more additional “layers”
of units, which in TC usually represent
higher-order interactions between terms
that the network is able to learn. When
comparative experiments relating nonlin-
ear NNs to their linear counterparts have
been performed, the former have yielded
either no improvement [Schütze et al.
1995] or very small improvements [Wiener
et al. 1995] over the latter.

6.9. Example-Based Classifiers

Example-based classifiers do not build an
explicit, declarative representation of the
category ci, but rely on the category la-
bels attached to the training documents
similar to the test document. These meth-
ods have thus been called lazy learners,
since “they defer the decision on how to
generalize beyond the training data until
each new query instance is encountered”
[Mitchell 1996, page 244].

The first application of example-based
methods (a.k.a. memory-based reason-
ing methods) to TC is due to Creecy,
Masand and colleagues [Creecy et al.
1992; Masand et al. 1992]; other examples
include Joachims [1998], Lam et al. [1999],
Larkey [1998], Larkey [1999], Li and Jain
[1998], Yang and Pedersen [1997], and
Yang and Liu [1999]. Our presentation of
the example-based approach will be based
on the k-NN (for “k nearest neighbors”)
algorithm used by Yang [1994]. For decid-
ing whether d j ∈ ci, k-NN looks at whether
the k training documents most similar to
d j also are in ci; if the answer is posi-
tive for a large enough proportion of them,

a positive decision is taken, and a nega-
tive decision is taken otherwise. Actually,
Yang’s is a distance-weighted version of
k-NN (see [Mitchell 1996, Section 8.2.1]),
since the fact that a most similar docu-
ment is in ci is weighted by its similar-
ity with the test document. Classifying d j
by means of k-NN thus comes down to
computing

CSVi(d j)

=
∑

dz∈ Trk (d j)

RSV(d j , dz) · [[!̆(dz , ci)]],

(9)

where Trk(d j) is the set of the k documents
dz which maximize RSV(d j , dz) and

[[α]] =
{

1 if α = T
0 if α = F

.

The thresholding methods of Section 6.1
can then be used to convert the real-
valued CSVi ’s into binary categorization
decisions. In (9), RSV(d j , dz) represents
some measure or semantic relatedness be-
tween a test document d j and a training
document dz ; any matching function, be it
probabilistic (as used by Larkey and Croft
[1996]) or vector-based (as used by Yang
[1994]), from a ranked IR system may be
used for this purpose. The construction of
a k-NN classifier also involves determin-
ing (experimentally, on a validation set) a
threshold k that indicates how many top-
ranked training documents have to be con-
sidered for computing CSVi(d j). Larkey
and Croft [1996] used k = 20, while Yang
[1994, 1999] has found 30 ≤ k ≤ 45 to yield
the best effectiveness. Anyhow, various ex-
periments have shown that increasing the
value of k does not significantly degrade
the performance.

Note that k-NN, unlike linear classi-
fiers, does not divide the document space
linearly, and hence does not suffer from
the problem discussed at the end of
Section 6.7. This is graphically depicted
in Figure 3(b), where the more “local”
character of k-NN with respect to Rocchio
can be appreciated.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 29

This method is naturally geared toward
document-pivoted TC, since ranking the
training documents for their similarity
with the test document can be done once
for all categories. For category-pivoted TC,
one would need to store the document
ranks for each test document, which is ob-
viously clumsy; DPC is thus de facto the
only reasonable way to use k-NN.

A number of different experiments (see
Section 7.3) have shown k-NN to be quite
effective. However, its most important
drawback is its inefficiency at classifica-
tion time: while, for example, with a lin-
ear classifier only a dot product needs to
be computed to classify a test document,
k-NN requires the entire training set to
be ranked for similarity with the test docu-
ment, which is much more expensive. This
is a drawback of “lazy” learning methods,
since they do not have a true training
phase and thus defer all the computation
to classification time.

6.9.1. Other Example-Based Techniques.
Various example-based techniques have
been used in the TC literature. For exam-
ple, Cohen and Hirsh [1998] implemented
an example-based classifier by extending
standard relational DBMS technology
with “similarity-based soft joins.” In
their WHIRL system they used the scoring
function

CSVi(d j)

= 1 −
∏

dz∈Trk (d j)

(1 − RSV(d j , dz))[[!̆(dz ,ci)]]

as an alternative to (9), obtaining a small
but statistically significant improvement
over a version of WHIRL using (9). In
their experiments this technique outper-
formed a number of other classifiers, such
as a C4.5 decision tree classifier and the
RIPPER CNF rule-based classifier.

A variant of the basic k-NN ap-
proach was proposed by Galavotti et al.
[2000], who reinterpreted (9) by redefining
[[α]] as

[[α]] =
{

1 if α = T
−1 if α = F

.

The difference from the original k-NN ap-
proach is that if a training document dz
similar to the test document d j does not
belong to ci, this information is not dis-
carded but weights negatively in the deci-
sion to classify d j under ci.

A combination of profile- and example-
based methods was presented in Lam and
Ho [1998]. In this work a k-NN system was
fed generalized instances (GIs) in place of
training documents. This approach may be
seen as the result of

—clustering the training set, thus obtain-
ing a set of clusters Ki = {ki1, . . . ,
ki|Ki |};

—building a profile G(kiz) (“generalized
instance”) from the documents belong-
ing to cluster kiz by means of some algo-
rithm for learning linear classifiers (e.g.,
Rocchio, WIDROW-HOFF);

—applying k-NN with profiles in place of
training documents, that is, computing

CSVi(d j)
def=

∑

kiz∈Ki

RSV(d j , G(kiz)) ·

|{d j ∈ kiz | !̆(d j , ci) = T }|
|{d j ∈ kiz}|

·

|{d j ∈ kiz}|
|Tr|

=
∑

kiz∈Ki

RSV(d j , G(kiz)) ·

|{d j ∈ kiz | !̆(d j , ci) = T }|
|Tr|

, (10)

where |{d j ∈kiz | !̆(d j ,ci)=T }|
|{d j ∈kiz }| represents the

“degree” to which G(kiz) is a positive in-
stance of ci, and |{d j ∈kiz }|

|Tr| represents its
weight within the entire process.

This exploits the superior effectiveness
(see Figure 3) of k-NN over linear clas-
sifiers while at the same time avoiding
the sensitivity of k-NN to the presence of
“outliers” (i.e., positive instances of ci that
“lie out” of the region where most other
positive instances of ci are located) in the
training set.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

30 Sebastiani

Fig. 4. Learning support vector classifiers.
The small crosses and circles represent posi-
tive and negative training examples, respec-
tively, whereas lines represent decision sur-
faces. Decision surface σi (indicated by the
thicker line) is, among those shown, the best
possible one, as it is the middle element of
the widest set of parallel decision surfaces
(i.e., its minimum distance to any training
example is maximum). Small boxes indicate
the support vectors.

6.10. Building Classifiers by Support
Vector Machines

The support vector machine (SVM) method
has been introduced in TC by Joachims
[1998, 1999] and subsequently used by
Drucker et al. [1999], Dumais et al. [1998],
Dumais and Chen [2000], Klinkenberg
and Joachims [2000], Taira and Haruno
[1999], and Yang and Liu [1999]. In ge-
ometrical terms, it may be seen as the
attempt to find, among all the surfaces
σ1, σ2, . . . in |T |-dimensional space that
separate the positive from the negative
training examples (decision surfaces), the
σi that separates the positives from the
negatives by the widest possible margin,
that is, such that the separation property
is invariant with respect to the widest pos-
sible traslation of σi.

This idea is best understood in the case
in which the positives and the negatives
are linearly separable, in which case the
decision surfaces are (|T |−1)-hyperplanes.
In the two-dimensional case of Figure 4,
various lines may be chosen as decision
surfaces. The SVM method chooses the

middle element from the “widest” set of
parallel lines, that is, from the set in which
the maximum distance between two ele-
ments in the set is highest. It is notewor-
thy that this “best” decision surface is de-
termined by only a small set of training
examples, called the support vectors.

The method described is applicable also
to the case in which the positives and the
negatives are not linearly separable. Yang
and Liu [1999] experimentally compared
the linear case (namely, when the assump-
tion is made that the categories are lin-
early separable) with the nonlinear case
on a standard benchmark, and obtained
slightly better results in the former case.

As argued by Joachims [1998], SVMs
offer two important advantages for TC:

—term selection is often not needed, as
SVMs tend to be fairly robust to over-
fitting and can scale up to considerable
dimensionalities;

—no human and machine effort in param-
eter tuning on a validation set is needed,
as there is a theoretically motivated,
“default” choice of parameter settings,
which has also been shown to provide
the best effectiveness.

Dumais et al. [1998] have applied a
novel algorithm for training SVMs which
brings about training speeds comparable
to computationally easy learners such as
Rocchio.

6.11. Classifier Committees

Classifier committees (a.k.a. ensembles)
are based on the idea that, given a task
that requires expert knowledge to per-
form, k experts may be better than one if
their individual judgments are appropri-
ately combined. In TC, the idea is to ap-
ply k different classifiers !1, . . . , !k to the
same task of deciding whether d j ∈ ci, and
then combine their outcome appropriately.
A classifier committee is then character-
ized by (i) a choice of k classifiers, and (ii)
a choice of a combination function.

Concerning Issue (i), it is known from
the ML literature that, in order to guar-
antee good effectiveness, the classifiers

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 31

forming the committee should be as in-
dependent as possible [Tumer and Ghosh
1996]. The classifiers may differ for the in-
dexing approach used, or for the inductive
method, or both. Within TC, the avenue
which has been explored most is the latter
(to our knowledge the only example of the
former is Scott and Matwin [1999]).

Concerning Issue (ii), various rules have
been tested. The simplest one is majority
voting (MV), whereby the binary outputs
of the k classifiers are pooled together, and
the classification decision that reaches the
majority of k+1

2 votes is taken (k obviously
needs to be an odd number) [Li and Jain
1998; Liere and Tadepalli 1997]. This
method is particularly suited to the case
in which the committee includes classi-
fiers characterized by a binary decision
function CSVi : D → {T, F }. A second rule
is weighted linear combination (WLC),
whereby a weighted sum of the CSVi ’s pro-
duced by the k classifiers yields the final
CSVi. The weights wj reflect the expected
relative effectiveness of classifiers ! j , and
are usually optimized on a validation set
[Larkey and Croft 1996]. Another policy
is dynamic classifier selection (DCS),
whereby among committee {!1, . . . , !k}
the classifier !t most effective on the l
validation examples most similar to d j
is selected, and its judgment adopted by
the committee [Li and Jain 1998]. A still
different policy, somehow intermediate
between WLC and DCS, is adaptive
classifier combination (ACC), whereby the
judgments of all the classifiers in the com-
mittee are summed together, but their in-
dividual contribution is weighted by their
effectiveness on the l validation examples
most similar to d j [Li and Jain 1998].

Classifier committees have had mixed
results in TC so far. Larkey and Croft
[1996] have used combinations of Rocchio,
Naı̈ve Bayes, and k-NN, all together or in
pairwise combinations, using a WLC rule.
In their experiments the combination of
any two classifiers outperformed the best
individual classifier (k-NN), and the com-
bination of the three classifiers improved
an all three pairwise combinations. These
results would seem to give strong sup-
port to the idea that classifier committees

can somehow profit from the complemen-
tary strengths of their individual mem-
bers. However, the small size of the test set
used (187 documents) suggests that more
experimentation is needed before conclu-
sions can be drawn.

Li and Jain [1998] have tested a commit-
tee formed of (various combinations of) a
Naı̈ve Bayes classifier, an example-based
classifier, a decision tree classifier, and a
classifier built by means of their own “sub-
space method”; the combination rules they
have worked with are MV, DCS, and ACC.
Only in the case of a committee formed
by Naı̈ve Bayes and the subspace classi-
fier combined by means of ACC has the
committee outperformed, and by a nar-
row margin, the best individual classifier
(for every attempted classifier combina-
tion ACC gave better results than MV and
DCS). This seems discouraging, especially
in light of the fact that the committee ap-
proach is computationally expensive (its
cost trivially amounts to the sum of the
costs of the individual classifiers plus
the cost incurred for the computation of
the combination rule). Again, it has to be
remarked that the small size of their ex-
periment (two test sets of less than 700
documents each were used) does not allow
us to draw definitive conclusions on the
approaches adopted.

6.11.1. Boosting. The boosting method
[Schapire et al. 1998; Schapire and Singer
2000] occupies a special place in the classi-
fier committees literature, since the k clas-
sifiers !1, . . . , !k forming the committee
are obtained by the same learning method
(here called the weak learner). The key
intuition of boosting is that the k clas-
sifiers should be trained not in a con-
ceptually parallel and independent way,
as in the committees described above,
but sequentially. In this way, in train-
ing classifier !i one may take into ac-
count how classifiers !1, . . . , !i−1 perform
on the training examples, and concentrate
on getting right those examples on which
!1, . . . , !i−1 have performed worst.

Specifically, for learning classifier !t
each ⟨d j , ci⟩ pair is given an “importance
weight” ht

i j (where h1
i j is set to be equal for

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

32 Sebastiani

all ⟨d j , ci⟩ pairs15), which represents how
hard to get a correct decision for this
pair was for classifiers !1, . . . , !t−1. These
weights are exploited in learning !t ,
which will be specially tuned to correctly
solve the pairs with higher weight. Clas-
sifier !t is then applied to the training
documents, and as a result weights ht

i j
are updated to ht+1

i j ; in this update oper-
ation, pairs correctly classified by !t will
have their weight decreased, while pairs
misclassified by !t will have their weight
increased. After all the k classifiers have
been built, a weighted linear combination
rule is applied to yield the final committee.

In the BOOSTEXTER system [Schapire and
Singer 2000], two different boosting al-
gorithms are tested, using a one-level
decision tree weak learner. The former
algorithm (ADABOOST.MH, simply called
ADABOOST in Schapire et al. [1998]) is ex-
plicitly geared toward the maximization of
microaveraged effectiveness, whereas the
latter (ADABOOST.MR) is aimed at mini-
mizing ranking loss (i.e., at getting a cor-
rect category ranking for each individual
document). In experiments conducted over
three different test collections, Schapire
et al. [1998] have shown ADABOOST to
outperform SLEEPING EXPERTS, a classifier
that had proven quite effective in the ex-
periments of Cohen and Singer [1999].
Further experiments by Schapire and
Singer [2000] showed ADABOOST to out-
perform, aside from SLEEPING EXPERTS, a
Naı̈ve Bayes classifier, a standard (nonen-
hanced) Rocchio classifier, and Joachims’
[1997] PRTFIDF classifier.

A boosting algorithm based on a “com-
mittee of classifier subcommittees” that
improves on the effectiveness and (espe-
cially) the efficiency of ADABOOST.MH was
presented in Sebastiani et al. [2000]. An
approach similar to boosting was also em-
ployed by Weiss et al. [1999], who experi-
mented with committees of decision trees
each having an average of 16 leaves (and
hence much more complex than the sim-

15 Schapire et al. [1998] also showed that a simple
modification of this policy allows optimization of the
classifier based on “utility” (see Section 7.1.3).

ple “decision stumps” used in Schapire
and Singer [2000]), eventually combined
by using the simple MV rule as a combi-
nation rule; similarly to boosting, a mech-
anism for emphasising documents that
have been misclassified by previous de-
cision trees is used. Boosting-based ap-
proaches have also been employed in
Escudero et al. [2000], Iyer et al. [2000],
Kim et al. [2000], Li and Jain [1998], and
Myers et al. [2000].

6.12. Other Methods

Although in the previous sections we
have tried to give an overview as com-
plete as possible of the learning ap-
proaches proposed in the TC literature, it
is hardly possible to be exhaustive. Some
of the learning approaches adopted do
not fall squarely under one or the other
class of algorithms, or have remained
somehow isolated attempts. Among these,
the most noteworthy are the ones based
on Bayesian inference networks [Dumais
et al. 1998; Lam et al. 1997; Tzeras
and Hartmann 1993], genetic algorithms
[Clack et al. 1997; Masand 1994], and
maximum entropy modelling [Manning
and Schütze 1999].

7. EVALUATION OF TEXT CLASSIFIERS

As for text search systems, the eval-
uation of document classifiers is typ-
ically conducted experimentally, rather
than analytically. The reason is that, in
order to evaluate a system analytically
(e.g., proving that the system is correct
and complete), we would need a formal
specification of the problem that the sys-
tem is trying to solve (e.g., with respect
to what correctness and completeness are
defined), and the central notion of TC
(namely, that of membership of a docu-
ment in a category) is, due to its subjective
character, inherently nonformalizable.

The experimental evaluation of a clas-
sifier usually measures its effectiveness
(rather than its efficiency), that is, its
ability to take the right classification
decisions.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 33

Table II. The Contingency Table for Category ci
Category Expert judgments

ci YES NO
Classifier YES TPi FPi

Judgments NO FNi TNi

7.1. Measures of Text
Categorization Effectiveness

7.1.1. Precision and Recall. Classification
effectiveness is usually measured in terms
of the classic IR notions of precision (π)
and recall (ρ), adapted to the case of
TC. Precision wrt ci (πi) is defined as
the conditional probability P (!̆(dx , ci) =
T | !(dx , ci) = T), that is, as the prob-
ability that if a random document dx is
classified under ci, this decision is correct.
Analogously, recall wrt ci (ρi) is defined
as P (!(dx , ci) = T | !̆(dx , ci) = T), that
is, as the probability that, if a random
document dx ought to be classified under
ci, this decision is taken. These category-
relative values may be averaged, in a way
to be discussed shortly, to obtain π and ρ,
that is, values global to the entire category
set. Borrowing terminology from logic, π
may be viewed as the “degree of sound-
ness” of the classifier wrt C, while ρ may
be viewed as its “degree of completeness”
wrt C. As defined here, πi and ρi are to
be understood as subjective probabilities,
that is, as measuring the expectation of
the user that the system will behave cor-
rectly when classifying an unseen docu-
ment under ci. These probabilities may
be estimated in terms of the contingency
table for ci on a given test set (see Table II).
Here, FPi (false positives wrt ci, a.k.a.
errors of commission) is the number of
test documents incorrectly classified un-
der ci; TNi (true negatives wrt ci), TPi (true
positives wrt ci), and FNi (false negatives
wrt ci, a.k.a. errors of omission) are de-
fined accordingly. Estimates (indicated by
carets) of precision wrt ci and recall wrt ci
may thus be obtained as

π̂i = TPi

TPi + FPi
, ρ̂i = TPi

TPi + FNi
.

For obtaining estimates of π and ρ, two
different methods may be adopted:

Table III. The Global Contingency Table
Category set Expert judgments

C = {c1, . . . , c|C|} YES NO

Classifier YES TP =
|C|∑

i=1

TPi FP =
|C|∑

i=1

FPi

Judgments NO FN =
|C|∑

i=1

FNi TN =
|C|∑

i=1

TNi

—microaveraging: π and ρ are obtained by
summing over all individual decisions:

π̂µ = TP
TP + FP

=
∑|C|

i=1 TPi∑|C|
i=1(TPi + FPi)

,

ρ̂µ = TP
TP + FN

=
∑|C|

i=1 TPi∑|C|
i=1(TPi + FNi)

,

where “µ” indicates microaverag-
ing. The “global” contingency table
(Table III) is thus obtained by sum-
ming over category-specific contin-
gency tables;

—macroaveraging: precision and recall
are first evaluated “locally” for each
category, and then “globally” by aver-
aging over the results of the different
categories:

π̂ M =
∑|C|

i=1 π̂i

|C|
, ρ̂M =

∑|C|
i=1 ρ̂i

|C|
,

where “M ” indicates macroaveraging.

These two methods may give quite dif-
ferent results, especially if the different
categories have very different generality.
For instance, the ability of a classifier to
behave well also on categories with low
generality (i.e., categories with few pos-
itive training instances) will be empha-
sized by macroaveraging and much less
so by microaveraging. Whether one or the
other should be used obviously depends on
the application requirements. From now
on, we will assume that microaveraging is
used; everything we will say in the rest of
Section 7 may be adapted to the case of
macroaveraging in the obvious way.

7.1.2. Other Measures of Effectiveness.
Measures alternative to π and ρ and
commonly used in the ML litera-
ture, such as accuracy (estimated as

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

34 Sebastiani

Â= TP+TN
TP+TN+FP+FN) and error (estimated

as Ê = FP+FN
TP+TN+FP+FN = 1 − Â), are not

widely used in TC. The reason is that, as
Yang [1999] pointed out, the large value
that their denominator typically has in
TC makes them much more insensitive to
variations in the number of correct deci-
sions (TP + TN) than π and ρ. Besides, if
A is the adopted evaluation measure, in
the frequent case of a very low average
generality the trivial rejector (i.e., the
classifier ! such that !(d j , ci) = F for
all d j and ci) tends to outperform all
nontrivial classifiers (see also Cohen
[1995a], Section 2.3). If A is adopted,
parameter tuning on a validation set may
thus result in parameter choices that
make the classifier behave very much like
the trivial rejector.

A nonstandard effectiveness mea-
sure was proposed by Sable and
Hatzivassiloglou [2000, Section 7], who
suggested basing π and ρ not on “abso-
lute” values of success and failure (i.e., 1
if !(d j , ci) = !̆(d j , ci) and 0 if !(d j , ci) ̸=
!̆(d j , ci)), but on values of relative suc-
cess (i.e., CSVi(d j) if !̆(d j , ci) = T and
1 − CSVi(d j) if !̆(d j , ci) = F). This means
that for a correct (respectively wrong)
decision the classifier is rewarded (re-
spectively penalized) proportionally to its
confidence in the decision. This proposed
measure does not reward the choice of a
good thresholding policy, and is thus unfit
for autonomous (“hard”) classification
systems. However, it might be appropri-
ate for interactive (“ranking”) classifiers
of the type used in Larkey [1999], where
the confidence that the classifier has
in its own decision influences category
ranking and, as a consequence, the overall
usefulness of the system.

7.1.3. Measures Alternative to Effectiveness.
In general, criteria different from effec-
tiveness are seldom used in classifier eval-
uation. For instance, efficiency, although
very important for applicative purposes,
is seldom used as the sole yardstick, due
to the volatility of the parameters on
which the evaluation rests. However, ef-
ficiency may be useful for choosing among

Table IV. The Utility Matrix
Category set Expert judgments

C = {c1, . . . , c|C|} YES NO
Classifier YES uTP uFP

Judgments NO uFN uTN

classifiers with similar effectiveness. An
interesting evaluation has been carried
out by Dumais et al. [1998], who have
compared five different learning methods
along three different dimensions, namely,
effectiveness, training efficiency (i.e., the
average time it takes to build a classifier
for category ci from a training set Tr), and
classification efficiency (i.e., the average
time it takes to classify a new document
d j under category ci).

An important alternative to effective-
ness is utility, a class of measures from
decision theory that extend effectiveness
by economic criteria such as gain or loss.
Utility is based on a utility matrix such
as that of Table IV, where the numeric
values uTP, uFP, uFN and uTN represent
the gain brought about by a true positive,
false positive, false negative, and true neg-
ative, respectively; both uTP and uTN are
greater than both uFP and uFN. “Standard”
effectiveness is a special case of utility,
i.e., the one in which uTP = uTN > uFP =
uFN. Less trivial cases are those in
which uTP ̸= uTN and/or uFP ̸= uFN; this
is appropriate, for example, in spam fil-
tering, where failing to discard a piece
of junk mail (FP) is a less serious mis-
take than discarding a legitimate mes-
sage (FN) [Androutsopoulos et al. 2000].
If the classifier outputs probability esti-
mates of the membership of d j in ci, then
decision theory provides analytical meth-
ods to determine thresholds τi, thus avoid-
ing the need to determine them exper-
imentally (as discussed in Section 6.1).
Specifically, as Lewis [1995a] reminds us,
the expected value of utility is maximized
when

τi = (uFP − uTN)
(uFN − uTP) + (uFP − uTN)

,

which, in the case of “standard” effective-
ness, is equal to 1

2 .

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 35

Table V. Trivial Cases in TC
Precision Recall C-precision C-recall

TP
TP + FP

TP
TP + FN

TN
FP + TN

TN
TN + FN

Trivial rejector TP = FP = 0 Undefined
0

FN
= 0

TN
TN

= 1
TN

TN + FN

Trivial acceptor FN = TN = 0
TP

TP + FP
TP
TP

= 1
0

FP
= 0 Undefined

Trivial “Yes” collection FP = TN = 0
TP
TP

= 1
TP

TP + FN
Undefined

0
FN

= 0

Trivial “No” collection TP = FN = 0
0

FP
= 0 Undefined

TN
FP + TN

TN
TN

= 1

The use of utility in TC is discussed
in detail by Lewis [1955a]. Other works
where utility is employed are Amati and
Crestani [1999], Cohen and Singer [1999],
Hull et al. [1996], Lewis and Catlett
[1994], and Schapire et al. [1998]. Utility
has become popular within the text filter-
ing community, and the TREC “filtering
track” evaluations have been using it for
a while [Lewis 1995c]. The values of the
utility matrix are extremely application-
dependent. This means that if utility is
used instead of “pure” effectiveness, there
is a further element of difficulty in the
cross-comparison of classification systems
(see Section 7.3), since for two classifiers
to be experimentally comparable also the
two utility matrices must be the same.

Other effectiveness measures different
from the ones discussed here have occa-
sionally been used in the literature; these
include adjacent score [Larkey 1998],
coverage [Schapire and Singer 2000], one-
error [Schapire and Singer 2000], Pear-
son product-moment correlation [Larkey
1998], recall at n [Larkey and Croft 1996],
top candidate [Larkey and Croft 1996],
and top n [Larkey and Croft 1996]. We
will not attempt to discuss them in detail.
However, their use shows that, although
the TC community is making consistent
efforts at standardizing experimentation
protocols, we are still far from universal
agreement on evaluation issues and, as
a consequence, from understanding pre-
cisely the relative merits of the various
methods.

7.1.4. Combined Effectiveness Measures.
Neither precision nor recall makes sense
in isolation from each other. In fact the
classifier ! such that !(d j , ci) = T for all
d j and ci (the trivial acceptor) has ρ = 1.
When the CSVi function has values in
[0, 1], one only needs to set every thresh-
old τi to 0 to obtain the trivial acceptor.
In this case, π would usually be very low
(more precisely, equal to the average test

set generality
∑|C|

i=1
gTe(ci)

|C|).16 Conversely, it
is well known from everyday IR practice
that higher levels of π may be obtained at
the price of low values of ρ.

In practice, by tuning τi a function
CSVi : D → {T, F } is tuned to be, in the
words of Riloff and Lehnert [1994], more
liberal (i.e., improving ρi to the detriment
of πi) or more conservative (improving πi to

16 From this, one might be tempted to infer, by sym-
metry, that the trivial rejector always has π = 1.
This is false, as π is undefined (the denominator is
zero) for the trivial rejector (see Table V). In fact,
it is clear from its definition (π = TP

TP+FP) that π

depends only on how the positives (TP + FP) are
split between true positives TP and the false posi-
tives FP , and does not depend at all on the cardinal-
ity of the positives. There is a breakup of “symme-
try” between π and ρ here because, from the point of
view of classifier judgment (positives vs. negatives;
this is the dichotomy of interest in trivial acceptor vs.
trivial rejector), the “symmetric” of ρ (TP

TP+FN) is not
π (TP

TP+FP) but C-precision (πc = TN
FP+TN), the “con-

trapositive” of π . In fact, while ρ = 1 and πc = 0 for
the trivial acceptor, πc = 1 and ρ = 0 for the trivial
rejector.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

36 Sebastiani

the detriment of ρi).17 A classifier should
thus be evaluated by means of a mea-
sure which combines π and ρ.18 Vari-
ous such measures have been proposed,
among which the most frequent are:

(1) Eleven-point average precision: thresh-
old τi is repeatedly tuned so as to allow
ρi to take up values of 0.0, .1, . . . , .9,
1.0; πi is computed for these 11 differ-
ent values of τi, and averaged over the
11 resulting values. This is analogous
to the standard evaluation methodol-
ogy for ranked IR systems, and may be
used
(a) with categories in place of IR

queries. This is most frequently
used for document-ranking clas-
sifiers (see Schütze et al. [1995];
Yang [1994]; Yang [1999]; Yang and
Pedersen [1997]);

(b) with test documents in place of
IR queries and categories in place
of documents. This is most fre-
quently used for category-ranking
classifiers (see Lam et al. [1999];
Larkey and Croft [1996]; Schapire
and Singer [2000]; Wiener et al.
[1995]). In this case, if macroav-
eraging is used, it needs to be re-
defined on a per-document, rather
than per-category, basis.

This measure does not make sense for
binary-valued CSVi functions, since in
this case ρi may not be varied at will.

(2) The breakeven point, that is, the
value at which π equals ρ (e.g., Apté
et al. [1994]; Cohen and Singer [1999];
Dagan et al. [1997]; Joachims [1998];

17 While ρi can always be increased at will by low-
ering τi , usually at the cost of decreasing πi , πi can
usually be increased at will by raising τi , always at
the cost of decreasing ρi . This kind of tuning is only
possible for CSVi functions with values in [0, 1]; for
binary-valued CSVi functions tuning is not always
possible, or is anyway more difficult (see Weiss et al.
[1999], page 66).
18 An exception is single-label TC, in which π and ρ
are not independent of each other: if a document d j
has been classified under a wrong category cs (thus
decreasing πs), this also means that it has not been
classified under the right category ct (thus decreas-
ing ρt). In this case either π or ρ can be used as a
measure of effectiveness.

Joachims [1999]; Lewis [1992a]; Lewis
and Ringuette [1994]; Moulinier and
Ganascia [1996]; Ng et al. [1997]; Yang
[1999]). This is obtained by a process
analogous to the one used for 11-point
average precision: a plot of π as a func-
tion of ρ is computed by repeatedly
varying the thresholds τi; breakeven
is the value of ρ (or π) for which the
plot intersects the ρ = π line. This idea
relies on the fact that, by decreasing
the τi ’s from 1 to 0, ρ always increases
monotonically from 0 to 1 and π usu-
ally decreases monotonically from a
value near 1 to 1

|C|
∑|C|

i=1 gTe(ci). If for
no values of the τi ’s π and ρ are ex-
actly equal, the τi ’s are set to the value
for which π and ρ are closest, and an
interpolated breakeven is computed as
the average of the values of π and ρ.19

(3) The Fβ function [van Rijsbergen 1979,
Chapter 7], for some 0 ≤ β ≤ + ∞
(e.g., Cohen [1995a]; Cohen and Singer
[1999]; Lewis and Gale [1994]; Lewis
[1995a]; Moulinier et al. [1996]; Ruiz
and Srinivassan [1999]), where

Fβ = (β2 + 1)πρ

β2π + ρ

Here β may be seen as the relative de-
gree of importance attributed to π and
ρ. If β = 0 then Fβ coincides with π ,
whereas if β = +∞ then Fβ coincides
with ρ. Usually, a value β = 1 is used,
which attributes equal importance to
π and ρ. As shown in Moulinier et al.
[1996] and Yang [1999], the breakeven
of a classifier ! is always less or equal
than its F1 value.

19 Breakeven, first proposed by Lewis [1992a, 1992b],
has been recently criticized. Lewis himself (see his
message of 11 Sep 1997 10:49:01 to the DDLBETA
text categorization mailing list—quoted with permis-
sion of the author) has pointed out that breakeven is
not a good effectiveness measure, since (i) there may
be no parameter setting that yields the breakeven; in
this case the final breakeven value, obtained by in-
terpolation, is artificial; (ii) to have ρ equal π is not
necessarily desirable, and it is not clear that a system
that achieves high breakeven can be tuned to score
high on other effectiveness measures. Yang [1999]
also noted that when for no value of the parameters π
and ρ are close enough, interpolated breakeven may
not be a reliable indicator of effectiveness.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 37

Once an effectiveness measure is chosen,
a classifier can be tuned (e.g., thresh-
olds and other parameters can be set)
so that the resulting effectiveness is the
best achievable by that classifier. Tun-
ing a parameter p (be it a threshold or
other) is normally done experimentally.
This means performing repeated experi-
ments on the validation set with the val-
ues of the other parameters pk fixed (at
a default value, in the case of a yet-to-
be-tuned parameter pk , or at the chosen
value, if the parameter pk has already
been tuned) and with different values for
parameter p. The value that has yielded
the best effectiveness is chosen for p.

7.2. Benchmarks for Text Categorization

Standard benchmark collections that can
be used as initial corpora for TC are publi-
cally available for experimental purposes.
The most widely used is the Reuters col-
lection, consisting of a set of newswire
stories classified under categories related
to economics. The Reuters collection ac-
counts for most of the experimental work
in TC so far. Unfortunately, this does not
always translate into reliable comparative
results, in the sense that many of these ex-
periments have been carried out in subtly
different conditions.

In general, different sets of experiments
may be used for cross-classifier compar-
ison only if the experiments have been
performed

(1) on exactly the same collection (i.e.,
same documents and same categories);

(2) with the same “split” between training
set and test set;

(3) with the same evaluation measure
and, whenever this measure depends
on some parameters (e.g., the utility
matrix chosen), with the same param-
eter values.

Unfortunately, a lot of experimentation,
both on Reuters and on other collec-
tions, has not been performed with these
caveats in mind: by testing three differ-
ent classifiers on five popular versions
of Reuters, Yang [1999] has shown that

a lack of compliance with these three
conditions may make the experimental
results hardly comparable among each
other. Table VI lists the results of all
experiments known to us performed on
five major versions of the Reuters bench-
mark: Reuters-22173 “ModLewis” (column
#1),Reuters-22173 “ModApté” (column #2),
Reuters-22173 “ModWiener” (column #3),
Reuters-21578 “ModApté” (column #4),
and Reuters-21578[10] “ModApté” (column
#5).20 Only experiments that have com-
puted either a breakeven or F1 have been
listed, since other less popular effective-
ness measures do not readily compare
with these.

Note that only results belonging to the
same column are directly comparable.
In particular, Yang [1999] showed that
experiments carried out on Reuters-22173
“ModLewis” (column #1) are not directly
comparable with those using the other
three versions, since the former strangely
includes a significant percentage (58%) of
“unlabeled” test documents which, being
negative examples of all categories, tend
to depress effectiveness. Also, experi-
ments performed on Reuters-21578[10]
“ModApté” (column #5) are not comparable
with the others, since this collection is the
restriction of Reuters-21578 “ModApté” to
the 10 categories with the highest gen-
erality, and is thus an obviously “easier”
collection.

Other test collections that have been
frequently used are

—the OHSUMED collection, set up
by Hersh et al. [1994] and used by
Joachims [1998], Lam and Ho [1998],
Lam et al. [1999], Lewis et al. [1996],
Ruiz and Srinivasan [1999], and Yang

20 The Reuters-21578 collection may be freely down-
loaded for experimentation purposes from http://
www.research.att.com/~lewis/reuters21578.html.
A new corpus, called Reuters Corpus Volume 1 and
consisting of roughly 800,000 documents, has
recently been made available by Reuters for
TC experiments (see http://about.reuters.com/
researchandstandards/corpus/). This will likely
replace Reuters-21578 as the “standard” Reuters
benchmark for TC.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

38 Sebastiani

Table VI. Comparative Results Among Different Classifiers Obtained on Five Different Versions of Reuters.
(Unless otherwise noted, entries indicate the microaveraged breakeven point; within parentheses, “M”
indicates macroaveraging and “F1” indicates use of the F1 measure; boldface indicates the best

performer on the collection)
#1 #2 #3 #4 #5

of documents 21,450 14,347 13,27212,90212,902
of training documents 14,704 10,667 9,610 9,603 9,603

of test documents 6,746 3,680 3,662 3,299 3,299
of categories 135 93 92 90 10

System Type Results reported by
WORD (non-learning) Yang [1999] .150 .310 .290

probabilistic [Dumais et al. 1998] .752 .815
probabilistic [Joachims 1998] .720
probabilistic [Lam et al. 1997] .443 (MF1)

PROPBAYES probabilistic [Lewis 1992a] .650
BIM probabilistic [Li and Yamanishi 1999] .747

probabilistic [Li and Yamanishi 1999] .773
NB probabilistic [Yang and Liu 1999] .795

decision trees [Dumais et al. 1998] .884
C4.5 decision trees [Joachims 1998] .794
IND decision trees [Lewis and Ringuette 1994] .670

SWAP-1 decision rules [Apté et al. 1994] .805
RIPPER decision rules [Cohen and Singer 1999] .683 .811 .820

SLEEPINGEXPERTS decision rules [Cohen and Singer 1999] .753 .759 .827
DL-ESC decision rules [Li and Yamanishi 1999] .820

CHARADE decision rules [Moulinier and Ganascia 1996] .738
CHARADE decision rules [Moulinier et al. 1996] .783 (F1)

LLSF regression [Yang 1999] .855 .810
LLSF regression [Yang and Liu 1999] .849

BALANCEDWINNOW on-line linear [Dagan et al. 1997] .747 (M) .833 (M)
WIDROW-HOFF on-line linear [Lam and Ho 1998] .822

ROCCHIO batch linear [Cohen and Singer 1999] .660 .748 .776
FINDSIM batch linear [Dumais et al. 1998] .617 .646
ROCCHIO batch linear [Joachims 1998] .799
ROCCHIO batch linear [Lam and Ho 1998] .781
ROCCHIO batch linear [Li and Yamanishi 1999] .625
CLASSI neural network [Ng et al. 1997] .802
NNET neural network Yang and Liu 1999] .838

neural network [Wiener et al. 1995] .820
GIS-W example-based [Lam and Ho 1998] .860
k-NN example-based [Joachims 1998] .823
k-NN example-based [Lam and Ho 1998] .820
k-NN example-based [Yang 1999] .690 .852 .820
k-NN example-based [Yang and Liu 1999] .856

SVM [Dumais et al. 1998] .870 .920
SVMLIGHT SVM [Joachims 1998] .864
SVMLIGHT SVM [Li Yamanishi 1999] .841
SVMLIGHT SVM [Yang and Liu 1999] .859

ADABOOST.MH committee [Schapire and Singer 2000] .860
committee [Weiss et al. 1999] .878

Bayesian net [Dumais et al. 1998] .800 .850
Bayesian net [Lam et al. 1997] .542 (MF1)

and Pedersen [1997].21 The documents
are titles or title-plus-abstracts from
medical journals (OHSUMED is actually
a subset of the Medline document base);

21 The OHSUMED collection may be freely down-
loaded for experimentation purposes from ftp://
medir.ohsu.edu/pub/ohsumed.

the categories are the “postable terms”
of the MESH thesaurus.

—the 20 Newsgroups collection, set up
by Lang [1995] and used by Baker
and McCallum [1998], Joachims
[1997], McCallum and Nigam [1998],
McCallum et al. [1998], Nigam et al.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 39

[2000], and Schapire and Singer [2000].
The documents are messages posted to
Usenet newsgroups, and the categories
are the newsgroups themselves.

—theAP collection, used by Cohen [1995a,
1995b], Cohen and Singer [1999], Lewis
and Catlett [1994], Lewis and Gale
[1994], Lewis et al. [1996], Schapire
and Singer [2000], and Schapire et al.
[1998].

We will not cover the experiments per-
formed on these collections for the same
reasons as those illustrated in footnote 20,
that is, because in no case have a signifi-
cant enough number of authors used the
same collection in the same experimen-
tal conditions, thus making comparisons
difficult.

7.3. Which Text Classifier Is Best?

The published experimental results, and
especially those listed in Table VI, allow
us to attempt some considerations on the
comparative performance of the TC meth-
ods discussed. However, we have to bear in
mind that comparisons are reliable only
when based on experiments performed
by the same author under carefully con-
trolled conditions. They are instead more
problematic when they involve different
experiments performed by different au-
thors. In this case various “background
conditions,” often extraneous to the learn-
ing algorithm itself, may influence the re-
sults. These may include, among others,
different choices in preprocessing (stem-
ming, etc.), indexing, dimensionality re-
duction, classifier parameter values, etc.,
but also different standards of compliance
with safe scientific practice (such as tun-
ing parameters on the test set rather than
on a separate validation set), which often
are not discussed in the published papers.

Two different methods may thus be
applied for comparing classifiers [Yang
1999]:

—direct comparison: classifiers !′ and !′′

may be compared when they have been
tested on the same collection ", usually
by the same researchers and with the

same background conditions. This is the
more reliable method.

—indirect comparison: classifiers !′ and
!′′ may be compared when
(1) they have been tested on collections

"′ and "′′, respectively, typically
by different researchers and hence
with possibly different background
conditions;

(2) one or more “baseline” classifiers
!̄1, . . . , !̄m have been tested on both
"′ and "′′ by the direct comparison
method.

Test 2 gives an indication on the rela-
tive “hardness” of "′ and "′′; using this
and the results from Test 1, we may
obtain an indication on the relative ef-
fectiveness of !′ and !′′. For the rea-
sons discussed above, this method is less
reliable.

A number of interesting conclusions can be
drawn from Table VI by using these two
methods. Concerning the relative “hard-
ness” of the five collections, if by "′ > "′′

we indicate that "′ is a harder collection
than "′′, there seems to be enough evi-
dence that Reuters-22173 “ModLewis” ≫
Reuters-22173 “ModWiener” > Reuters-
22173 “ModApté” ≈ Reuters-21578 “Mod-
Apté” > Reuters-21578[10] “ModApté.”
These facts are unsurprising; in particu-
lar, the first and the last inequalities are a
direct consequence of the peculiar charac-
teristics of Reuters-22173 “ModLewis” and
Reuters-21578[10] “ModApté” discussed in
Section 7.2.

Concerning the relative performance of
the classifiers, remembering the consid-
erations above we may attempt a few
conclusions:

—Boosting-based classifier committees,
support vector machines, example-
based methods, and regression methods
deliver top-notch performance. There
seems to be no sufficient evidence to
decidedly opt for either method; ef-
ficiency considerations or application-
dependent issues might play a role in
breaking the tie.

—Neural networks and on-line linear clas-
sifiers work very well, although slightly

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

40 Sebastiani

worse than the previously mentioned
methods.

—Batch linear classifiers (Rocchio) and
probabilistic Naı̈ve Bayes classifiers
look the worst of the learning-based
classifiers. For Rocchio, these results
confirm earlier results by Schütze
et al. [1995], who had found three classi-
fiers based on linear discriminant anal-
ysis, linear regression, and neural net-
works to perform about 15% better
than Rocchio. However, recent results
by Schapire et al. [1998] ranked Rocchio
along the best performers once near-
positives are used in training.

—The data in Table VI is hardly suf-
ficient to say anything about decision
trees. However, the work by Dumais
et al. [1998], in which a decision tree
classifier was shown to perform nearly
as well as their top performing system
(a SVM classifier), will probably renew
the interest in decision trees, an interest
that had dwindled after the unimpres-
sive results reported in earlier litera-
ture [Cohen and Singer 1999; Joachims
1998; Lewis and Catlett 1994; Lewis
and Ringuette 1994].

—By far the lowest performance is
displayed by WORD, a classifier im-
plemented by Yang [1999] and not
including any learning component.22

Concerning WORD and no-learning classi-
fiers, for completeness we should recall
that one of the highest effectiveness values
reported in the literature for the Reuters
collection (a .90 breakeven) belongs to
CONSTRUE, a manually constructed clas-
sifier. However, this classifier has never
been tested on the standard variants of
Reuters mentioned in Table VI, and it is
not clear [Yang 1999] whether the (small)
test set of Reuters-22173 “ModHayes” on

22 WORD is based on the comparison between docu-
ments and category names, each treated as a vector of
weighted terms in the vector space model. WORD was
implemented by Yang with the only purpose of de-
termining the difference in effectiveness that adding
a learning component to a classifier brings about.
WORD is actually called STR in [Yang 1994; Yang and
Chute 1994]. Another no-learning classifier was pro-
posed in Wong et al. [1996].

which the .90 breakeven value was ob-
tained was chosen randomly, as safe sci-
entific practice would demand. Therefore,
the fact that this figure is indicative of the
performance of CONSTRUE, and of the man-
ual approach it represents, has been con-
vincingly questioned [Yang 1999].

It is important to bear in mind that
the considerations above are not abso-
lute statements (if there may be any)
on the comparative effectiveness of these
TC methods. One of the reasons is that
a particular applicative context may ex-
hibit very different characteristics from
the ones to be found in Reuters, and dif-
ferent classifiers may respond differently
to these characteristics. An experimen-
tal study by Joachims [1998] involving
support vector machines, k-NN, decision
trees, Rocchio, and Naı̈ve Bayes, showed
all these classifiers to have similar ef-
fectiveness on categories with ≥ 300 pos-
itive training examples each. The fact
that this experiment involved the meth-
ods which have scored best (support vec-
tor machines, k-NN) and worst (Rocchio
and Naı̈ve Bayes) according to Table VI
shows that applicative contexts different
from Reuters may well invalidate conclu-
sions drawn on this latter.

Finally, a note about the worth of sta-
tistical significance testing. Few authors
have gone to the trouble of validating their
results by means of such tests. These tests
are useful for verifying how strongly the
experimental results support the claim
that a given system !′ is better than an-
other system !′′, or for verifying how much
a difference in the experimental setup af-
fects the measured effectiveness of a sys-
tem !. Hull [1994] and Schütze et al.
[1995] have been among the first to work
in this direction, validating their results
by means of the ANOVA test and the Fried-
man test; the former is aimed at determin-
ing the significance of the difference in ef-
fectiveness between two methods in terms
of the ratio between this difference and the
effectiveness variability across categories,
while the latter conducts a similar test by
using instead the rank positions of each
method within a category. Yang and Liu
[1999] defined a full suite of significance

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 41

tests, some of which apply to microaver-
aged and some to macroaveraged effective-
ness. They applied them systematically
to the comparison between five different
classifiers, and were thus able to infer fine-
grained conclusions about their relative
effectiveness. For other examples of sig-
nificance testing in TC, see Cohen [1995a,
1995b]; Cohen and Hirsh [1998], Joachims
[1997], Koller and Sahami [1997], Lewis
et al. [1996], and Wiener et al. [1995].

8. CONCLUSION

Automated TC is now a major research
area within the information systems dis-
cipline, thanks to a number of factors:

—Its domains of application are numer-
ous and important, and given the pro-
liferation of documents in digital form
they are bound to increase dramatically
in both number and importance.

—It is indispensable in many applica-
tions in which the sheer number of
the documents to be classified and the
short response time required by the ap-
plication make the manual alternative
implausible.

—It can improve the productivity of
human classifiers in applications in
which no classification decision can be
taken without a final human judgment
[Larkey and Croft 1996], by providing
tools that quickly “suggest” plausible
decisions.

—It has reached effectiveness levels com-
parable to those of trained profession-
als. The effectiveness of manual TC is
not 100% anyway [Cleverdon 1984] and,
more importantly, it is unlikely to be
improved substantially by the progress
of research. The levels of effectiveness
of automated TC are instead growing
at a steady pace, and even if they will
likely reach a plateau well below the
100% level, this plateau will probably
be higher than the effectiveness levels
of manual TC.

One of the reasons why from the early
’90s the effectiveness of text classifiers
has dramatically improved is the arrival

in the TC arena of ML methods that
are backed by strong theoretical motiva-
tions. Examples of these are multiplica-
tive weight updating (e.g., the WINNOW
family, WIDROW-HOFF, etc.), adaptive re-
sampling (e.g., boosting), and support vec-
tor machines, which provide a sharp con-
trast with relatively unsophisticated and
weak methods such as Rocchio. In TC,
ML researchers have found a challeng-
ing application, since datasets consisting
of hundreds of thousands of documents
and characterized by tens of thousands of
terms are widely available. This means
that TC is a good benchmark for checking
whether a given learning technique can
scale up to substantial sizes. In turn, this
probably means that the active involve-
ment of the ML community in TC is bound
to grow.

The success story of automated TC is
also going to encourage an extension of
its methods and techniques to neighbor-
ing fields of application. Techniques typ-
ical of automated TC have already been
extended successfully to the categoriza-
tion of documents expressed in slightly dif-
ferent media; for instance:

—very noisy text resulting from opti-
cal character recognition [Ittner et al.
1995; Junker and Hoch 1998]. In their
experiments Ittner et al. [1995] have
found that, by employing noisy texts
also in the training phase (i.e. texts af-
fected by the same source of noise that
is also at work in the test documents),
effectiveness levels comparable to those
obtainable in the case of standard text
can be achieved.

—speech transcripts [Myers et al.
2000; Schapire and Singer 2000].
For instance, Schapire and Singer
[2000] classified answers given to a
phone operator’s request “How may I
help you?” so as to be able to route the
call to a specialized operator according
to call type.

Concerning other more radically differ-
ent media, the situation is not as bright
(however, see Lim [1999] for an interest-
ing attempt at image categorization based

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

42 Sebastiani

on a textual metaphor). The reason for
this is that capturing real semantic con-
tent of nontextual media by automatic in-
dexing is still an open problem. While
there are systems that attempt to detect
content, for example, in images by rec-
ognizing shapes, color distributions, and
texture, the general problem of image se-
mantics is still unsolved. The main reason
is that natural language, the language of
the text medium, admits far fewer vari-
ations than the “languages” employed by
the other media. For instance, while the
concept of a house can be “triggered” by
relatively few natural language expres-
sions such as house, houses, home, housing,
inhabiting, etc., it can be triggered by far
more images: the images of all the differ-
ent houses that exist, of all possible colors
and shapes, viewed from all possible per-
spectives, from all possible distances, etc.
If we had solved the multimedia indexing
problem in a satisfactory way, the general
methodology that we have discussed in
this paper for text would also apply to au-
tomated multimedia categorization, and
there are reasons to believe that the ef-
fectiveness levels could be as high. This
only adds to the common sentiment that
more research in automated content-
based indexing for multimedia documents
is needed.

ACKNOWLEDGMENTS

This paper owes a lot to the suggestions and con-
structive criticism of Norbert Fuhr and David Lewis.
Thanks also to Umberto Straccia for comments on
an earlier draft, to Evgeniy Gabrilovich, Daniela
Giorgetti, and Alessandro Moschitti for spotting mis-
takes in an earlier draft, and to Alessandro Sperduti
for many fruitful discussions.

REFERENCES
AMATI, G. AND CRESTANI, F. 1999. Probabilistic

learning for selective dissemination of informa-
tion. Inform. Process. Man. 35, 5, 633–654.

ANDROUTSOPOULOS, I., KOUTSIAS, J., CHANDRINOS, K. V.,
AND SPYROPOULOS, C. D. 2000. An experimen-
tal comparison of naive Bayesian and keyword-
based anti-spam filtering with personal e-mail
messages. In Proceedings of SIGIR-00, 23rd
ACM International Conference on Research and
Development in Information Retrieval (Athens,
Greece, 2000), 160–167.

APTÉ, C., DAMERAU, F. J., AND WEISS, S. M. 1994.
Automated learning of decision rules for text
categorization. ACM Trans. on Inform. Syst. 12,
3, 233–251.

ATTARDI, G., DI MARCO, S., AND SALVI, D. 1998. Cat-
egorization by context. J. Univers. Comput. Sci.
4, 9, 719–736.

BAKER, L. D. AND MCCALLUM, A. K. 1998. Distribu-
tional clustering of words for text classification.
In Proceedings of SIGIR-98, 21st ACM Interna-
tional Conference on Research and Development
in Information Retrieval (Melbourne, Australia,
1998), 96–103.

BELKIN, N. J. AND CROFT, W. B. 1992. Information
filtering and information retrieval: two sides
of the same coin? Commun. ACM 35, 12, 29–
38.

BIEBRICHER, P., FUHR, N., KNORZ, G., LUSTIG, G., AND

SCHWANTNER, M. 1988. The automatic index-
ing system AIR/PHYS. From research to appli-
cation. In Proceedings of SIGIR-88, 11th ACM
International Conference on Research and De-
velopment in Information Retrieval (Grenoble,
France, 1988), 333–342. Also reprinted in Sparck
Jones and Willett [1997], pp. 513–517.

BORKO, H. AND BERNICK, M. 1963. Automatic docu-
ment classification. J. Assoc. Comput. Mach. 10,
2, 151–161.

CAROPRESO, M. F., MATWIN, S., AND SEBASTIANI, F.
2001. A learner-independent evaluation of the
usefulness of statistical phrases for automated
text categorization. In Text Databases and Doc-
ument Management: Theory and Practice, A. G.
Chin, ed. Idea Group Publishing, Hershey, PA,
78–102.

CAVNAR, W. B. AND TRENKLE, J. M. 1994. N-gram-
based text categorization. In Proceedings of
SDAIR-94, 3rd Annual Symposium on Docu-
ment Analysis and Information Retrieval (Las
Vegas, NV, 1994), 161–175.

CHAKRABARTI, S., DOM, B. E., AGRAWAL, R., AND

RAGHAVAN, P. 1998a. Scalable feature selec-
tion, classification and signature generation for
organizing large text databases into hierarchical
topic taxonomies. J. Very Large Data Bases 7, 3,
163–178.

CHAKRABARTI, S., DOM, B. E., AND INDYK, P. 1998b.
Enhanced hypertext categorization using hyper-
links. In Proceedings of SIGMOD-98, ACM In-
ternational Conference on Management of Data
(Seattle, WA, 1998), 307–318.

CLACK, C., FARRINGDON, J., LIDWELL, P., AND YU, T.
1997. Autonomous document classification for
business. In Proceedings of the 1st International
Conference on Autonomous Agents (Marina del
Rey, CA, 1997), 201–208.

CLEVERDON, C. 1984. Optimizing convenient on-
line access to bibliographic databases. Inform.
Serv. Use 4, 1, 37–47. Also reprinted in Willett
[1988], pp. 32–41.

COHEN, W. W. 1995a. Learning to classify English
text with ILP methods. In Advances in Inductive

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 43

Logic Programming, L. De Raedt, ed. IOS Press,
Amsterdam, The Netherlands, 124–143.

COHEN, W. W. 1995b. Text categorization and rela-
tional learning. In Proceedings of ICML-95, 12th
International Conference on Machine Learning
(Lake Tahoe, CA, 1995), 124–132.

COHEN, W. W. AND HIRSH, H. 1998. Joins that gen-
eralize: text classification using WHIRL. In Pro-
ceedings of KDD-98, 4th International Confer-
ence on Knowledge Discovery and Data Mining
(New York, NY, 1998), 169–173.

COHEN, W. W. AND SINGER, Y. 1999. Context-
sensitive learning methods for text categoriza-
tion. ACM Trans. Inform. Syst. 17, 2, 141–
173.

COOPER, W. S. 1995. Some inconsistencies and mis-
nomers in probabilistic information retrieval.
ACM Trans. Inform. Syst. 13, 1, 100–111.

CREECY, R. M., MASAND, B. M., SMITH, S. J., AND WALTZ,
D. L. 1992. Trading MIPS and memory for
knowledge engineering: classifying census re-
turns on the Connection Machine. Commun.
ACM 35, 8, 48–63.

CRESTANI, F., LALMAS, M., VAN RIJSBERGEN, C. J., AND

CAMPBELL, I. 1998. “Is this document rele-
vant? . . . probably.” A survey of probabilistic
models in information retrieval. ACM Comput.
Surv. 30, 4, 528–552.

DAGAN, I., KAROV, Y., AND ROTH, D. 1997. Mistake-
driven learning in text categorization. In Pro-
ceedings of EMNLP-97, 2nd Conference on Em-
pirical Methods in Natural Language Processing
(Providence, RI, 1997), 55–63.

DEERWESTER, S., DUMAIS, S. T., FURNAS, G. W.,
LANDAUER, T. K., AND HARSHMAN, R. 1990. In-
dexing by latent semantic indexing. J. Amer. Soc.
Inform. Sci. 41, 6, 391–407.

DENOYER, L., ZARAGOZA, H., AND GALLINARI, P. 2001.
HMM-based passage models for document clas-
sification and ranking. In Proceedings of ECIR-
01, 23rd European Colloquium on Information
Retrieval Research (Darmstadt, Germany, 2001).

DÍAZ ESTEBAN, A., DE BUENAGA RODRÍGUEZ, M., UREÑA

LÓPEZ, L. A., AND GARCÍA VEGA, M. 1998. In-
tegrating linguistic resources in an uniform
way for text classification tasks. In Proceed-
ings of LREC-98, 1st International Conference on
Language Resources and Evaluation (Grenada,
Spain, 1998), 1197–1204.

DOMINGOS, P. AND PAZZANI, M. J. 1997. On the the
optimality of the simple Bayesian classifier un-
der zero-one loss. Mach. Learn. 29, 2–3, 103–130.

DRUCKER, H., VAPNIK, V., AND WU, D. 1999. Auto-
matic text categorization and its applications to
text retrieval. IEEE Trans. Neural Netw. 10, 5,
1048–1054.

DUMAIS, S. T. AND CHEN, H. 2000. Hierarchical clas-
sification of Web content. In Proceedings of
SIGIR-00, 23rd ACM International Conference
on Research and Development in Information
Retrieval (Athens, Greece, 2000), 256–263.

DUMAIS, S. T., PLATT, J., HECKERMAN, D., AND SAHAMI,
M. 1998. Inductive learning algorithms and
representations for text categorization. In Pro-
ceedings of CIKM-98, 7th ACM International
Conference on Information and Knowledge Man-
agement (Bethesda, MD, 1998), 148–155.

ESCUDERO, G., MÀRQUEZ, L., AND RIGAU, G. 2000.
Boosting applied to word sense disambiguation.
In Proceedings of ECML-00, 11th European Con-
ference on Machine Learning (Barcelona, Spain,
2000), 129–141.

FIELD, B. 1975. Towards automatic indexing: auto-
matic assignment of controlled-language index-
ing and classification from free indexing. J. Doc-
ument. 31, 4, 246–265.

FORSYTH, R. S. 1999. New directions in text catego-
rization. In Causal Models and Intelligent Data
Management, A. Gammerman, ed. Springer,
Heidelberg, Germany, 151–185.

FRASCONI, P., SODA, G., AND VULLO, A. 2002. Text
categorization for multi-page documents: A
hybrid naive Bayes HMM approach. J. Intell.
Inform. Syst. 18, 2/3 (March–May), 195–217.

FUHR, N. 1985. A probabilistic model of dictionary-
based automatic indexing. In Proceedings of
RIAO-85, 1st International Conference “Re-
cherche d’Information Assistee par Ordinateur”
(Grenoble, France, 1985), 207–216.

FUHR, N. 1989. Models for retrieval with proba-
bilistic indexing. Inform. Process. Man. 25, 1, 55–
72.

FUHR, N. AND BUCKLEY, C. 1991. A probabilistic
learning approach for document indexing. ACM
Trans. Inform. Syst. 9, 3, 223–248.

FUHR, N., HARTMANN, S., KNORZ, G., LUSTIG, G.,
SCHWANTNER, M., AND TZERAS, K. 1991.
AIR/X—a rule-based multistage indexing
system for large subject fields. In Proceed-
ings of RIAO-91, 3rd International Conference
“Recherche d’Information Assistee par Ordina-
teur” (Barcelona, Spain, 1991), 606–623.

FUHR, N. AND KNORZ, G. 1984. Retrieval test
evaluation of a rule-based automated index-
ing (AIR/PHYS). In Proceedings of SIGIR-84,
7th ACM International Conference on Research
and Development in Information Retrieval
(Cambridge, UK, 1984), 391–408.

FUHR, N. AND PFEIFER, U. 1994. Probabilistic in-
formation retrieval as combination of abstrac-
tion inductive learning and probabilistic as-
sumptions. ACM Trans. Inform. Syst. 12, 1,
92–115.

FÜRNKRANZ, J. 1999. Exploiting structural infor-
mation for text classification on the WWW.
In Proceedings of IDA-99, 3rd Symposium on
Intelligent Data Analysis (Amsterdam, The
Netherlands, 1999), 487–497.

GALAVOTTI, L., SEBASTIANI, F., AND SIMI, M. 2000.
Experiments on the use of feature selec-
tion and negative evidence in automated text
categorization. In Proceedings of ECDL-00,
4th European Conference on Research and

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

44 Sebastiani

Advanced Technology for Digital Libraries
(Lisbon, Portugal, 2000), 59–68.

GALE, W. A., CHURCH, K. W., AND YAROWSKY, D. 1993.
A method for disambiguating word senses in a
large corpus. Comput. Human. 26, 5, 415–439.

GÖVERT, N., LALMAS, M., AND FUHR, N. 1999. A
probabillistic description-oriented approach for
categorising Web documents. In Proceedings of
CIKM-99, 8th ACM International Conference
on Information and Knowledge Management
(Kansas City, MO, 1999), 475–482.

GRAY, W. A. AND HARLEY, A. J. 1971. Computer-
assisted indexing. Inform. Storage Retrieval 7,
4, 167–174.

GUTHRIE, L., WALKER, E., AND GUTHRIE, J. A. 1994.
Document classification by machine: theory
and practice. In Proceedings of COLING-94, 15th
International Conference on Computational Lin-
guistics (Kyoto, Japan, 1994), 1059–1063.

HAYES, P. J., ANDERSEN, P. M., NIRENBURG, I. B.,
AND SCHMANDT, L. M. 1990. Tcs: a shell for
content-based text categorization. In Proceed-
ings of CAIA-90, 6th IEEE Conference on Arti-
ficial Intelligence Applications (Santa Barbara,
CA, 1990), 320–326.

HEAPS, H. 1973. A theory of relevance for au-
tomatic document classification. Inform. Con-
trol 22, 3, 268–278.

HERSH, W., BUCKLEY, C., LEONE, T., AND HICKMAN, D.
1994. OHSUMED: an interactive retrieval evalu-
ation and new large text collection for research.
In Proceedings of SIGIR-94, 17th ACM Interna-
tional Conference on Research and Development
in Information Retrieval (Dublin, Ireland, 1994),
192–201.

HULL, D. A. 1994. Improving text retrieval for the
routing problem using latent semantic indexing.
In Proceedings of SIGIR-94, 17th ACM Interna-
tional Conference on Research and Development
in Information Retrieval (Dublin, Ireland, 1994),
282–289.

HULL, D. A., PEDERSEN, J. O., AND SCHÜTZE, H. 1996.
Method combination for document filtering. In
Proceedings of SIGIR-96, 19th ACM Interna-
tional Conference on Research and Development
in Information Retrieval (Zürich, Switzerland,
1996), 279–288.

ITTNER, D. J., LEWIS, D. D., AND AHN, D. D. 1995.
Text categorization of low quality images. In
Proceedings of SDAIR-95, 4th Annual Sympo-
sium on Document Analysis and Information
Retrieval (Las Vegas, NV, 1995), 301–315.

IWAYAMA, M. AND TOKUNAGA, T. 1995. Cluster-based
text categorization: a comparison of category
search strategies. In Proceedings of SIGIR-95,
18th ACM International Conference on Research
and Development in Information Retrieval
(Seattle, WA, 1995), 273–281.

IYER, R. D., LEWIS, D. D., SCHAPIRE, R. E., SINGER, Y.,
AND SINGHAL, A. 2000. Boosting for document
routing. In Proceedings of CIKM-00, 9th ACM
International Conference on Information and

Knowledge Management (McLean, VA, 2000),
70–77.

JOACHIMS, T. 1997. A probabilistic analysis of the
Rocchio algorithm with TFIDF for text cat-
egorization. In Proceedings of ICML-97, 14th
International Conference on Machine Learning
(Nashville, TN, 1997), 143–151.

JOACHIMS, T. 1998. Text categorization with sup-
port vector machines: learning with many rel-
evant features. In Proceedings of ECML-98,
10th European Conference on Machine Learning
(Chemnitz, Germany, 1998), 137–142.

JOACHIMS, T. 1999. Transductive inference for text
classification using support vector machines. In
Proceedings of ICML-99, 16th International Con-
ference on Machine Learning (Bled, Slovenia,
1999), 200–209.

JOACHIMS, T. AND SEBASTIANI, F. 2002. Guest editors’
introduction to the special issue on automated
text categorization. J. Intell. Inform. Syst. 18, 2/3
(March-May), 103–105.

JOHN, G. H., KOHAVI, R., AND PFLEGER, K. 1994. Ir-
relevant features and the subset selection prob-
lem. In Proceedings of ICML-94, 11th Interna-
tional Conference on Machine Learning (New
Brunswick, NJ, 1994), 121–129.

JUNKER, M. AND ABECKER, A. 1997. Exploiting the-
saurus knowledge in rule induction for text clas-
sification. In Proceedings of RANLP-97, 2nd In-
ternational Conference on Recent Advances in
Natural Language Processing (Tzigov Chark,
Bulgaria, 1997), 202–207.

JUNKER, M. AND HOCH, R. 1998. An experimen-
tal evaluation of OCR text representations for
learning document classifiers. Internat. J. Docu-
ment Analysis and Recognition 1, 2, 116–122.

KESSLER, B., NUNBERG, G., AND SCHÜTZE, H. 1997.
Automatic detection of text genre. In Proceed-
ings of ACL-97, 35th Annual Meeting of the Asso-
ciation for Computational Linguistics (Madrid,
Spain, 1997), 32–38.

KIM, Y.-H., HAHN, S.-Y., AND ZHANG, B.-T. 2000. Text
filtering by boosting naive Bayes classifiers. In
Proceedings of SIGIR-00, 23rd ACM Interna-
tional Conference on Research and Development
in Information Retrieval (Athens, Greece, 2000),
168–175.

KLINKENBERG, R. AND JOACHIMS, T. 2000. Detect-
ing concept drift with support vector machines.
In Proceedings of ICML-00, 17th International
Conference on Machine Learning (Stanford, CA,
2000), 487–494.

KNIGHT, K. 1999. Mining online text. Commun.
ACM 42, 11, 58–61.

KNORZ, G. 1982. A decision theory approach to
optimal automated indexing. In Proceedings of
SIGIR-82, 5th ACM International Conference
on Research and Development in Information
Retrieval (Berlin, Germany, 1982), 174–193.

KOLLER, D. AND SAHAMI, M. 1997. Hierarchically
classifying documents using very few words. In

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 45

Proceedings of ICML-97, 14th International Con-
ference on Machine Learning (Nashville, TN,
1997), 170–178.

KORFHAGE, R. R. 1997. Information Storage and
Retrieval. Wiley Computer Publishing, New
York, NY.

LAM, S. L. AND LEE, D. L. 1999. Feature reduc-
tion for neural network based text categoriza-
tion. In Proceedings of DASFAA-99, 6th IEEE
International Conference on Database Advanced
Systems for Advanced Application (Hsinchu,
Taiwan, 1999), 195–202.

LAM, W. AND HO, C. Y. 1998. Using a generalized
instance set for automatic text categorization.
In Proceedings of SIGIR-98, 21st ACM Interna-
tional Conference on Research and Development
in Information Retrieval (Melbourne, Australia,
1998), 81–89.

LAM, W., LOW, K. F., AND HO, C. Y. 1997. Using a
Bayesian network induction approach for text
categorization. In Proceedings of IJCAI-97, 15th
International Joint Conference on Artificial In-
telligence (Nagoya, Japan, 1997), 745–750.

LAM, W., RUIZ, M. E., AND SRINIVASAN, P. 1999. Auto-
matic text categorization and its applications to
text retrieval. IEEE Trans. Knowl. Data Engin.
11, 6, 865–879.

LANG, K. 1995. NEWSWEEDER: learning to filter net-
news. In Proceedings of ICML-95, 12th Interna-
tional Conference on Machine Learning (Lake
Tahoe, CA, 1995), 331–339.

LARKEY, L. S. 1998. Automatic essay grading us-
ing text categorization techniques. In Pro-
ceedings of SIGIR-98, 21st ACM International
Conference on Research and Development in
Information Retrieval (Melbourne, Australia,
1998), 90–95.

LARKEY, L. S. 1999. A patent search and classifica-
tion system. In Proceedings of DL-99, 4th ACM
Conference on Digital Libraries (Berkeley, CA,
1999), 179–187.

LARKEY, L. S. AND CROFT, W. B. 1996. Combining
classifiers in text categorization. In Proceedings
of SIGIR-96, 19th ACM International Conference
on Research and Development in Information
Retrieval (Zürich, Switzerland, 1996), 289–297.

LEWIS, D. D. 1992a. An evaluation of phrasal and
clustered representations on a text categoriza-
tion task. In Proceedings of SIGIR-92, 15th ACM
International Conference on Research and Devel-
opment in Information Retrieval (Copenhagen,
Denmark, 1992), 37–50.

LEWIS, D. D. 1992b. Representation and Learn-
ing in Information Retrieval. Ph. D. thesis, De-
partment of Computer Science, University of
Massachusetts, Amherst, MA.

LEWIS, D. D. 1995a. Evaluating and optmizing au-
tonomous text classification systems. In Pro-
ceedings of SIGIR-95, 18th ACM International
Conference on Research and Development in
Information Retrieval (Seattle, WA, 1995), 246–
254.

LEWIS, D. D. 1995b. A sequential algorithm for
training text classifiers: corrigendum and addi-
tional data. SIGIR Forum 29, 2, 13–19.

LEWIS, D. D. 1995c. The TREC-4 filtering track:
description and analysis. In Proceedings
of TREC-4, 4th Text Retrieval Conference
(Gaithersburg, MD, 1995), 165–180.

LEWIS, D. D. 1998. Naive (Bayes) at forty: The
independence assumption in information re-
trieval. In Proceedings of ECML-98, 10th
European Conference on Machine Learning
(Chemnitz, Germany, 1998), 4–15.

LEWIS, D. D. AND CATLETT, J. 1994. Heterogeneous
uncertainty sampling for supervised learning. In
Proceedings of ICML-94, 11th International Con-
ference on Machine Learning (New Brunswick,
NJ, 1994), 148–156.

LEWIS, D. D. AND GALE, W. A. 1994. A sequential
algorithm for training text classifiers. In Pro-
ceedings of SIGIR-94, 17th ACM International
Conference on Research and Development in
Information Retrieval (Dublin, Ireland, 1994),
3–12. See also Lewis [1995b].

LEWIS, D. D. AND HAYES, P. J. 1994. Guest editorial
for the special issue on text categorization. ACM
Trans. Inform. Syst. 12, 3, 231.

LEWIS, D. D. AND RINGUETTE, M. 1994. A compar-
ison of two learning algorithms for text cat-
egorization. In Proceedings of SDAIR-94, 3rd
Annual Symposium on Document Analysis and
Information Retrieval (Las Vegas, NV, 1994),
81–93.

LEWIS, D. D., SCHAPIRE, R. E., CALLAN, J. P., AND PAPKA,
R. 1996. Training algorithms for linear text
classifiers. In Proceedings of SIGIR-96, 19th
ACM International Conference on Research and
Development in Information Retrieval (Zürich,
Switzerland, 1996), 298–306.

LI, H. AND YAMANISHI, K. 1999. Text classification
using ESC-based stochastic decision lists. In
Proceedings of CIKM-99, 8th ACM International
Conference on Information and Knowledge Man-
agement (Kansas City, MO, 1999), 122–130.

LI, Y. H. AND JAIN, A. K. 1998. Classification of text
documents. Comput. J. 41, 8, 537–546.

LIDDY, E. D., PAIK, W., AND YU, E. S. 1994. Text cat-
egorization for multiple users based on seman-
tic features from a machine-readable dictionary.
ACM Trans. Inform. Syst. 12, 3, 278–295.

LIERE, R. AND TADEPALLI, P. 1997. Active learning
with committees for text categorization. In Pro-
ceedings of AAAI-97, 14th Conference of the
American Association for Artificial Intelligence
(Providence, RI, 1997), 591–596.

LIM, J. H. 1999. Learnable visual keywords for im-
age classification. In Proceedings of DL-99, 4th
ACM Conference on Digital Libraries (Berkeley,
CA, 1999), 139–145.

MANNING, C. AND SCHÜTZE, H. 1999. Foundations of
Statistical Natural Language Processing. MIT
Press, Cambridge, MA.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

46 Sebastiani

MARON, M. 1961. Automatic indexing: an experi-
mental inquiry. J. Assoc. Comput. Mach. 8, 3,
404–417.

MASAND, B. 1994. Optimising confidence of text
classification by evolution of symbolic expres-
sions. In Advances in Genetic Programming,
K. E. Kinnear, ed. MIT Press, Cambridge, MA,
Chapter 21, 459–476.

MASAND, B., LINOFF, G., AND WALTZ, D. 1992. Clas-
sifying news stories using memory-based rea-
soning. In Proceedings of SIGIR-92, 15th ACM
International Conference on Research and Devel-
opment in Information Retrieval (Copenhagen,
Denmark, 1992), 59–65.

MCCALLUM, A. K. AND NIGAM, K. 1998. Employ-
ing EM in pool-based active learning for text
classification. In Proceedings of ICML-98, 15th
International Conference on Machine Learning
(Madison, WI, 1998), 350–358.

MCCALLUM, A. K., ROSENFELD, R., MITCHELL, T. M., AND

NG, A. Y. 1998. Improving text classification
by shrinkage in a hierarchy of classes. In Pro-
ceedings of ICML-98, 15th International Confer-
ence on Machine Learning (Madison, WI, 1998),
359–367.

MERKL, D. 1998. Text classification with self-
organizing maps: Some lessons learned. Neuro-
computing 21, 1/3, 61–77.

MITCHELL, T. M. 1996. Machine Learning. McGraw
Hill, New York, NY.

MLADENIĆ, D. 1998. Feature subset selection in
text learning. In Proceedings of ECML-98,
10th European Conference on Machine Learning
(Chemnitz, Germany, 1998), 95–100.

MLADENIĆ, D. AND GROBELNIK, M. 1998. Word se-
quences as features in text-learning. In Pro-
ceedings of ERK-98, the Seventh Electrotechni-
cal and Computer Science Conference (Ljubljana,
Slovenia, 1998), 145–148.

MOULINIER, I. AND GANASCIA, J.-G. 1996. Applying
an existing machine learning algorithm to text
categorization. In Connectionist, Statistical,
and Symbolic Approaches to Learning for Nat-
ural Language Processing, S. Wermter, E. Riloff,
and G. Schaler, eds. Springer Verlag, Heidelberg,
Germany, 343–354.

MOULINIER, I., RAS̆KINIS, G., AND GANASCIA, J.-G. 1996.
Text categorization: a symbolic approach. In
Proceedings of SDAIR-96, 5th Annual Sympo-
sium on Document Analysis and Information
Retrieval (Las Vegas, NV, 1996), 87–99.

MYERS, K., KEARNS, M., SINGH, S., AND WALKER,
M. A. 2000. A boosting approach to topic
spotting on subdialogues. In Proceedings of
ICML-00, 17th International Conference on Ma-
chine Learning (Stanford, CA, 2000), 655–
662.

NG, H. T., GOH, W. B., AND LOW, K. L. 1997. Fea-
ture selection, perceptron learning, and a us-
ability case study for text categorization. In Pro-
ceedings of SIGIR-97, 20th ACM International
Conference on Research and Development in

Information Retrieval (Philadelphia, PA, 1997),
67–73.

NIGAM, K., MCCALLUM, A. K., THRUN, S., AND MITCHELL,
T. M. 2000. Text classification from labeled
and unlabeled documents using EM. Mach.
Learn. 39, 2/3, 103–134.

OH, H.-J., MYAENG, S. H., AND LEE, M.-H. 2000. A
practical hypertext categorization method using
links and incrementally available class informa-
tion. In Proceedings of SIGIR-00, 23rd ACM In-
ternational Conference on Research and Develop-
ment in Information Retrieval (Athens, Greece,
2000), 264–271.

PAZIENZA, M. T., ed. 1997. Information Extraction.
Lecture Notes in Computer Science, Vol. 1299.
Springer, Heidelberg, Germany.

RILOFF. E. 1995. Little words can make a big dif-
ference for text classification. In Proceedings of
SIGIR-95, 18th ACM International Conference
on Research and Development in Information
Retrieval (Seattle, WA, 1995), 130–136.

RILOFF, E. AND LEHNERT, W. 1994. Information ex-
traction as a basis for high-precision text classifi-
cation. ACM Trans. Inform. Syst. 12, 3, 296–333.

ROBERTSON, S. E. AND HARDING, P. 1984. Probabilis-
tic automatic indexing by learning from human
indexers. J. Document. 40, 4, 264–270.

ROBERTSON, S. E. AND SPARCK JONES, K. 1976. Rel-
evance weighting of search terms. J. Amer. Soc.
Inform. Sci. 27, 3, 129–146. Also reprinted in
Willett [1988], pp. 143–160.

ROTH, D. 1998. Learning to resolve natural
language ambiguities: a unified approach. In
Proceedings of AAAI-98, 15th Conference of the
American Association for Artificial Intelligence
(Madison, WI, 1998), 806–813.

RUIZ, M. E. AND SRINIVASAN, P. 1999. Hierarchical
neural networks for text categorization. In Pro-
ceedings of SIGIR-99, 22nd ACM International
Conference on Research and Development in
Information Retrieval (Berkeley, CA, 1999),
281–282.

SABLE, C. L. AND HATZIVASSILOGLOU, V. 2000. Text-
based approaches for non-topical image catego-
rization. Internat. J. Dig. Libr. 3, 3, 261–275.

SALTON, G. AND BUCKLEY, C. 1988. Term-weighting
approaches in automatic text retrieval. Inform.
Process. Man. 24, 5, 513–523. Also reprinted in
Sparck Jones and Willett [1997], pp. 323–328.

SALTON, G., WONG, A., AND YANG, C. 1975. A vector
space model for automatic indexing. Commun.
ACM 18, 11, 613–620. Also reprinted in Sparck
Jones and Willett [1997], pp. 273–280.

SARACEVIC, T. 1975. Relevance: a review of and
a framework for the thinking on the notion in
information science. J. Amer. Soc. Inform. Sci.
26, 6, 321–343. Also reprinted in Sparck Jones
and Willett [1997], pp. 143–165.

SCHAPIRE, R. E. AND SINGER, Y. 2000. BoosTexter:
a boosting-based system for text categorization.
Mach. Learn. 39, 2/3, 135–168.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Machine Learning in Automated Text Categorization 47

SCHAPIRE, R. E., SINGER, Y., AND SINGHAL, A. 1998.
Boosting and Rocchio applied to text filtering.
In Proceedings of SIGIR-98, 21st ACM Interna-
tional Conference on Research and Development
in Information Retrieval (Melbourne, Australia,
1998), 215–223.

SCHÜTZE, H. 1998. Automatic word sense discrimina-
tion. Computat. Ling. 24, 1, 97–124.

SCHÜTZE, H., HULL, D. A., AND PEDERSEN, J. O. 1995.
A comparison of classifiers and document repre-
sentations for the routing problem. In Proceed-
ings of SIGIR-95, 18th ACM International Con-
ference on Research and Development in Infor-
mation Retrieval (Seattle, WA, 1995), 229–237.

SCOTT, S. AND MATWIN, S. 1999. Feature engineer-
ing for text classification. In Proceedings of
ICML-99, 16th International Conference on Ma-
chine Learning (Bled, Slovenia, 1999), 379–388.

SEBASTIANI, F., SPERDUTI, A., AND VALDAMBRINI, N.
2000. An improved boosting algorithm and its
application to automated text categorization. In
Proceedings of CIKM-00, 9th ACM International
Conference on Information and Knowledge
Management (McLean, VA, 2000), 78–85.

SINGHAL, A., MITRA, M., AND BUCKLEY, C. 1997.
Learning routing queries in a query zone. In
Proceedings of SIGIR-97, 20th ACM Interna-
tional Conference on Research and Development
in Information Retrieval (Philadelphia, PA,
1997), 25–32.

SINGHAL, A., SALTON, G., MITRA, M., AND BUCKLEY,
C. 1996. Document length normalization.
Inform. Process. Man. 32, 5, 619–633.

SLONIM, N. AND TISHBY, N. 2001. The power of word
clusters for text classification. In Proceedings
of ECIR-01, 23rd European Colloquium on
Information Retrieval Research (Darmstadt,
Germany, 2001).

SPARCK JONES, K. AND WILLETT, P., eds. 1997.
Readings in Information Retrieval. Morgan
Kaufmann, San Mateo, CA.

TAIRA, H. AND HARUNO, M. 1999. Feature selection
in SVM text categorization. In Proceedings
of AAAI-99, 16th Conference of the American
Association for Artificial Intelligence (Orlando,
FL, 1999), 480–486.

TAURITZ, D. R., KOK, J. N., AND SPRINKHUIZEN-KUYPER,
I. G. 2000. Adaptive information filtering
using evolutionary computation. Inform. Sci.
122, 2–4, 121–140.

TUMER, K. AND GHOSH, J. 1996. Error correlation
and error reduction in ensemble classifiers.
Connection Sci. 8, 3-4, 385–403.

TZERAS, K. AND HARTMANN, S. 1993. Automatic
indexing based on Bayesian inference networks.
In Proceedings of SIGIR-93, 16th ACM Interna-
tional Conference on Research and Development
in Information Retrieval (Pittsburgh, PA, 1993),
22–34.

VAN RIJSBERGEN, C. J. 1977. A theoretical basis for
the use of co-occurrence data in information
retrieval. J. Document. 33, 2, 106–119.

VAN RIJSBERGEN, C. J. 1979. Information Retrieval,
2nd ed. Butterworths, London, UK. Available at
http://www.dcs.gla.ac.uk/Keith.

WEIGEND, A. S., WIENER, E. D., AND PEDERSEN, J. O.
1999. Exploiting hierarchy in text catagoriza-
tion. Inform. Retr. 1, 3, 193–216.

WEISS, S. M., APTÉ, C., DAMERAU, F. J., JOHNSON, D.
E., OLES, F. J., GOETZ, T., AND HAMPP, T. 1999.
Maximizing text-mining performance. IEEE
Intell. Syst. 14, 4, 63–69.

WIENER, E. D., PEDERSEN, J. O., AND WEIGEND, A. S.
1995. A neural network approach to topic spot-
ting. In Proceedings of SDAIR-95, 4th Annual
Symposium on Document Analysis and Informa-
tion Retrieval (Las Vegas, NV, 1995), 317–332.

WILLETT, P., ed. 1988. Document Retrieval Sys-
tems. Taylor Graham, London, UK.

WONG, J. W., KAN, W.-K., AND YOUNG, G. H. 1996.
ACTION: automatic classification for full-text
documents. SIGIR Forum 30, 1, 26–41.

YANG, Y. 1994. Expert network: effective and
efficient learning from human decisions in text
categorisation and retrieval. In Proceedings of
SIGIR-94, 17th ACM International Conference
on Research and Development in Information
Retrieval (Dublin, Ireland, 1994), 13–22.

YANG, Y. 1995. Noise reduction in a statistical ap-
proach to text categorization. In Proceedings of
SIGIR-95, 18th ACM International Conference
on Research and Development in Information
Retrieval (Seattle, WA, 1995), 256–263.

YANG, Y. 1999. An evaluation of statistical ap-
proaches to text categorization. Inform. Retr. 1,
1–2, 69–90.

YANG, Y. AND CHUTE, C. G. 1994. An example-based
mapping method for text categorization and re-
trieval. ACM Trans. Inform. Syst. 12, 3, 252–277.

YANG, Y. AND LIU, X. 1999. A re-examination of
text categorization methods. In Proceedings of
SIGIR-99, 22nd ACM International Conference
on Research and Development in Information
Retrieval (Berkeley, CA, 1999), 42–49.

YANG, Y. AND PEDERSEN, J. O. 1997. A comparative
study on feature selection in text categorization.
In Proceedings of ICML-97, 14th International
Conference on Machine Learning (Nashville,
TN, 1997), 412–420.

YANG, Y., SLATTERY, S., AND GHANI, R. 2002. A study
of approaches to hypertext categorization. J. In-
tell. Inform. Syst. 18, 2/3 (March-May), 219–241.

YU, K. L. AND LAM, W. 1998. A new on-line learn-
ing algorithm for adaptive text filtering. In
Proceedings of CIKM-98, 7th ACM International
Conference on Information and Knowledge
Management (Bethesda, MD, 1998), 156–160.

Received December 1999; revised February 2001; accepted July 2001

ACM Computing Surveys, Vol. 34, No. 1, March 2002.

Basic Text
Processing

Regular Expressions

Regular expressions

A formal language for specifying text strings
How can we search for any of these?
◦ woodchuck
◦ woodchucks
◦ Woodchuck
◦ Woodchucks

Regular Expressions: Disjunctions

Letters inside square brackets []

Ranges [A-Z]

Pattern Matches
[wW]oodchuck Woodchuck, woodchuck
[1234567890] Any digit

Pattern Matches
[A-Z] An upper case letter Drenched Blossoms

[a-z] A lower case letter my beans were impatient

[0-9] A single digit Chapter 1: Down the Rabbit Hole

Regular Expressions: Negation in Disjunction

Negations [^Ss]
◦ Carat means negation only when first in []

Pattern Matches
[^A-Z] Not an upper case

letter
Oyfn pripetchik

[^Ss] Neither ‘S’ nor ‘s’ I have no exquisite reason”

[^e^] Neither e nor ^ Look here

a^b The pattern a carat b Look up a^b now

Regular Expressions: More Disjunction

Woodchuck is another name for groundhog!
The pipe | for disjunction

Pattern Matches
groundhog|woodchuck woodchuck

yours|mine yours

a|b|c = [abc]
[gG]roundhog|[Ww]oodchuck Woodchuck

Regular Expressions: ? *+.

Stephen C Kleene

Pattern Matches
colou?r Optional

previous char
color colour

oo*h! 0 or more of
previous char

oh! ooh! oooh! ooooh!

o+h! 1 or more of
previous char

oh! ooh! oooh! ooooh!

baa+ baa baaa baaaa baaaaa

beg.n begin begun begun beg3n
Kleene *, Kleene +

Regular Expressions: Anchors ^ $

Pattern Matches
^[A-Z] Palo Alto

^[^A-Za-z] 1 “Hello”

\.$ The end.

.$ The end? The end!

Example

Find me all instances of the word “the” in a text.
the

Misses capitalized examples
[tT]he

Incorrectly returns other or theology
[^a-zA-Z][tT]he[^a-zA-Z]

Errors

The process we just went through was based on
fixing two kinds of errors:

1. Matching strings that we should not have matched
(there, then, other)

False positives (Type I errors)

2. Not matching things that we should have matched (The)
False negatives (Type II errors)

Errors cont.

In NLP we are always dealing with these kinds of
errors.
Reducing the error rate for an application often
involves two antagonistic efforts:

◦ Increasing accuracy or precision (minimizing false
positives)

◦ Increasing coverage or recall (minimizing false negatives).

Summary

Regular expressions play a surprisingly large role
◦ Sophisticated sequences of regular expressions are often

the first model for any text processing text

For hard tasks, we use machine learning classifiers
◦ But regular expressions are still used for pre-processing,

or as features in the classifiers
◦ Can be very useful in capturing generalizations

11

Basic Text
Processing

Regular Expressions

Basic Text
Processing

More Regular Expressions:
Substitutions and ELIZA

Substitutions

Substitution in Python and UNIX commands:

s/regexp1/pattern/
e.g.:
s/colour/color/

Capture Groups

• Say we want to put angles around all numbers:
the 35 boxes à the <35> boxes

• Use parens () to "capture" a pattern into a
numbered register (1, 2, 3…)

• Use \1 to refer to the contents of the register
s/([0-9]+)/<\1>/

Capture groups: multiple registers

/the (.*)er they (.*), the \1er we \2/

Matches
the faster they ran, the faster we ran

But not
the faster they ran, the faster we ate

But suppose we don't want to capture?

Parentheses have a double function: grouping terms, and
capturing
Non-capturing groups: add a ?: after paren:
/(?:some|a few) (people|cats) like some \1/

matches
◦ some cats like some cats

but not
◦ some cats like some some

Lookahead assertions

(?= pattern) is true if pattern matches, but is
zero-width; doesn't advance character pointer
(?! pattern) true if a pattern does not match

How to match, at the beginning of a line, any single
word that doesn’t start with “Volcano”:
/ˆ(?!Volcano)[A-Za-z]+/

Simple Application: ELIZA
Early NLP system that imitated a Rogerian
psychotherapist

◦ Joseph Weizenbaum, 1966.

Uses pattern matching to match, e.g.,:
◦ “I need X”
and translates them into, e.g.
◦ “What would it mean to you if you got X?

Simple Application: ELIZA
Men are all alike.
IN WHAT WAY
They're always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE
Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE
He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED

How ELIZA works

s/.* I’M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/
s/.* I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/
s/.* all .*/IN WHAT WAY?/
s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE?/

Basic Text
Processing

More Regular Expressions:
Substitutions and ELIZA

Basic Text
Processing

Words and Corpora

How many words in a sentence?

"I do uh main- mainly business data processing"
◦ Fragments, filled pauses

"Seuss’s cat in the hat is different from other cats!"
◦ Lemma: same stem, part of speech, rough word sense

◦ cat and cats = same lemma
◦ Wordform: the full inflected surface form

◦ cat and cats = different wordforms

How many words in a sentence?

they lay back on the San Francisco grass and looked at the stars
and their

Type: an element of the vocabulary.
Token: an instance of that type in running text.
How many?
◦ 15 tokens (or 14)
◦ 13 types (or 12) (or 11?)

How many words in a corpus?
N = number of tokens
V = vocabulary = set of types, |V| is size of vocabulary
Heaps Law = Herdan's Law = where often .67 < β < .75

i.e., vocabulary size grows with > square root of the number of word tokens

Tokens = N Types = |V|
Switchboard phone conversations 2.4 million 20 thousand
Shakespeare 884,000 31 thousand
COCA 440 million 2 million
Google N-grams 1 trillion 13+ million

2.2 • WORDS 11

duce other complications with regard to defining words. Let’s look at one utterance
from Switchboard; an utterance is the spoken correlate of a sentence:utterance

I do uh main- mainly business data processing

This utterance has two kinds of disfluencies. The broken-off word main- isdisfluency

called a fragment. Words like uh and um are called fillers or filled pauses. Shouldfragment
filled pause we consider these to be words? Again, it depends on the application. If we are

building a speech transcription system, we might want to eventually strip out the
disfluencies.

But we also sometimes keep disfluencies around. Disfluencies like uh or um
are actually helpful in speech recognition in predicting the upcoming word, because
they may signal that the speaker is restarting the clause or idea, and so for speech
recognition they are treated as regular words. Because people use different disflu-
encies they can also be a cue to speaker identification. In fact Clark and Fox Tree
(2002) showed that uh and um have different meanings. What do you think they are?

Are capitalized tokens like They and uncapitalized tokens like they the same
word? These are lumped together in some tasks (speech recognition), while for part-
of-speech or named-entity tagging, capitalization is a useful feature and is retained.

How about inflected forms like cats versus cat? These two words have the same
lemma cat but are different wordforms. A lemma is a set of lexical forms havinglemma
the same stem, the same major part-of-speech, and the same word sense. The word-
form is the full inflected or derived form of the word. For morphologically complexwordform
languages like Arabic, we often need to deal with lemmatization. For many tasks in
English, however, wordforms are sufficient.

How many words are there in English? To answer this question we need to
distinguish two ways of talking about words. Types are the number of distinct wordsword type

in a corpus; if the set of words in the vocabulary is V , the number of types is the
vocabulary size |V |. Tokens are the total number N of running words. If we ignoreword token
punctuation, the following Brown sentence has 16 tokens and 14 types:

They picnicked by the pool, then lay back on the grass and looked at the stars.

When we speak about the number of words in the language, we are generally
referring to word types.

Corpus Tokens = N Types = |V |
Shakespeare 884 thousand 31 thousand
Brown corpus 1 million 38 thousand
Switchboard telephone conversations 2.4 million 20 thousand
COCA 440 million 2 million
Google N-grams 1 trillion 13 million

Figure 2.11 Rough numbers of types and tokens for some English language corpora. The
largest, the Google N-grams corpus, contains 13 million types, but this count only includes
types appearing 40 or more times, so the true number would be much larger.

Fig. 2.11 shows the rough numbers of types and tokens computed from some
popular English corpora. The larger the corpora we look at, the more word types
we find, and in fact this relationship between the number of types |V | and number
of tokens N is called Herdan’s Law (Herdan, 1960) or Heaps’ Law (Heaps, 1978)Herdan’s Law

Heaps’ Law after its discoverers (in linguistics and information retrieval respectively). It is shown
in Eq. 2.1, where k and b are positive constants, and 0 < b < 1.

|V | = kNb (2.1)

Corpora

Words don't appear out of nowhere!
A text is produced by
• a specific writer(s),
• at a specific time,
• in a specific variety,
• of a specific language,
• for a specific function.

Corpora vary along dimension like

◦ Language: 7097 languages in the world
◦ Variety, like African American Language varieties.

◦ AAE Twitter posts might include forms like "iont" (I don't)
◦ Code switching, e.g., Spanish/English, Hindi/English:

S/E: Por primera vez veo a @username actually being hateful! It was beautiful:)
[For the first time I get to see @username actually being hateful! it was beautiful:)]

H/E: dost tha or ra- hega ... dont wory ... but dherya rakhe
[“he was and will remain a friend ... don’t worry ... but have faith”]

◦ Genre: newswire, fiction, scientific articles, Wikipedia
◦ Author Demographics: writer's age, gender, ethnicity, SES

Corpus datasheets

Motivation:
• Why was the corpus collected?
• By whom?
• Who funded it?

Situation: In what situation was the text written?
Collection process: If it is a subsample how was it sampled? Was
there consent? Pre-processing?

+Annotation process, language variety, demographics, etc.

Gebru et al (2020), Bender and Friedman (2018)

Basic Text
Processing

Words and Corpora

Basic Text
Processing

Word tokenization

Text Normalization

Every NLP task requires text normalization:
1. Tokenizing (segmenting) words
2. Normalizing word formats
3. Segmenting sentences

Space-based tokenization

A very simple way to tokenize
◦ For languages that use space characters between words

◦ Arabic, Cyrillic, Greek, Latin, etc., based writing systems
◦ Segment off a token between instances of spaces

Unix tools for space-based tokenization
◦ The "tr" command
◦ Inspired by Ken Church's UNIX for Poets
◦ Given a text file, output the word tokens and their frequencies

Simple Tokenization in UNIX
(Inspired by Ken Church’s UNIX for Poets.)
Given a text file, output the word tokens and their frequencies
tr -sc ’A-Za-z’ ’\n’ < shakes.txt

| sort
| uniq –c

1945 A

72 AARON

19 ABBESS

5 ABBOT

... ...

25 Aaron
6 Abate
1 Abates
5 Abbess
6 Abbey
3 Abbot

.... …

Change all non-alpha to newlines

Sort in alphabetical order

Merge and count each type

The first step: tokenizing

tr -sc ’A-Za-z’ ’\n’ < shakes.txt | head

THE

SONNETS

by

William

Shakespeare

From

fairest

creatures

We

...

The second step: sorting

tr -sc ’A-Za-z’ ’\n’ < shakes.txt | sort | head

A

A

A

A

A

A

A

A

A

...

More counting
Merging upper and lower case
tr ‘A-Z’ ‘a-z’ < shakes.txt | tr –sc ‘A-Za-z’ ‘\n’ | sort | uniq –c

Sorting the counts
tr ‘A-Z’ ‘a-z’ < shakes.txt | tr –sc ‘A-Za-z’ ‘\n’ | sort | uniq –c | sort –n –r

23243 the
22225 i
18618 and
16339 to
15687 of
12780 a
12163 you
10839 my
10005 in
8954 d

What happened here?

Issues in Tokenization
Can't just blindly remove punctuation:
◦ m.p.h., Ph.D., AT&T, cap’n
◦ prices ($45.55)
◦ dates (01/02/06)
◦ URLs (http://www.stanford.edu)
◦ hashtags (#nlproc)
◦ email addresses (someone@cs.colorado.edu)

Clitic: a word that doesn't stand on its own
◦ "are" in we're, French "je" in j'ai, "le" in l'honneur

When should multiword expressions (MWE) be words?
◦ New York, rock ’n’ roll

Tokenization in NLTK

16 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

Input: "The San Francisco-based restaurant," they said,

"doesn’t charge $10".

Output: " The San Francisco-based restaurant , " they said ,
" does n’t charge $ 10 " .

In practice, since tokenization needs to be run before any other language pro-
cessing, it needs to be very fast. The standard method for tokenization is therefore
to use deterministic algorithms based on regular expressions compiled into very ef-
ficient finite state automata. For example, Fig. 2.12 shows an example of a basic
regular expression that can be used to tokenize with the nltk.regexp tokenize
function of the Python-based Natural Language Toolkit (NLTK) (Bird et al. 2009;
http://www.nltk.org).

>>> text = ’That U.S.A. poster-print costs $12.40...’

>>> pattern = r’’’(?x) # set flag to allow verbose regexps

... ([A-Z]\.)+ # abbreviations, e.g. U.S.A.

... | \w+(-\w+)* # words with optional internal hyphens

... | \$?\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82%

... | \.\.\. # ellipsis

... | [][.,;"’?():-_‘] # these are separate tokens; includes], [

... ’’’

>>> nltk.regexp_tokenize(text, pattern)

[’That’, ’U.S.A.’, ’poster-print’, ’costs’, ’$12.40’, ’...’]

Figure 2.12 A Python trace of regular expression tokenization in the NLTK Python-based
natural language processing toolkit (Bird et al., 2009), commented for readability; the (?x)
verbose flag tells Python to strip comments and whitespace. Figure from Chapter 3 of Bird
et al. (2009).

Carefully designed deterministic algorithms can deal with the ambiguities that
arise, such as the fact that the apostrophe needs to be tokenized differently when used
as a genitive marker (as in the book’s cover), a quotative as in ‘The other class’, she
said, or in clitics like they’re.

Word tokenization is more complex in languages like written Chinese, Japanese,
and Thai, which do not use spaces to mark potential word-boundaries. In Chinese,
for example, words are composed of characters (called hanzi in Chinese). Eachhanzi
character generally represents a single unit of meaning (called a morpheme) and is
pronounceable as a single syllable. Words are about 2.4 characters long on average.
But deciding what counts as a word in Chinese is complex. For example, consider
the following sentence:
(2.4) ⁄�€e;≥[

“Yao Ming reaches the finals”
As Chen et al. (2017) point out, this could be treated as 3 words (‘Chinese Treebank’
segmentation):
(2.5) ⁄�

YaoMing
€e
reaches

;≥[
finals

or as 5 words (‘Peking University’ segmentation):
(2.6) ⁄

Yao
�
Ming

€e
reaches

;
overall

≥[
finals

Finally, it is possible in Chinese simply to ignore words altogether and use characters
as the basic elements, treating the sentence as a series of 7 characters:

Bird, Loper and Klein (2009), Natural Language Processing with Python. O’Reilly

Tokenization in languages without spaces

Many languages (like Chinese, Japanese, Thai) don't
use spaces to separate words!

How do we decide where the token boundaries
should be?

Word tokenization in Chinese

Chinese words are composed of characters called
"hanzi" (or sometimes just "zi")
Each one represents a meaning unit called a morpheme.
Each word has on average 2.4 of them.
But deciding what counts as a word is complex and not
agreed upon.

How to do word tokenization in Chinese?

姚明进入总决赛 “Yao Ming reaches the finals”

3 words?
姚明 进入 总决赛
YaoMing reaches finals

5 words?
姚 明 进入 总 决赛
Yao Ming reaches overall finals

7 characters? (don't use words at all):
姚 明 进 入 总 决 赛
Yao Ming enter enter overall decision game

How to do word tokenization in Chinese?

姚明进入总决赛 “Yao Ming reaches the finals”

3 words?
姚明 进入 总决赛
YaoMing reaches finals

5 words?
姚 明 进入 总 决赛
Yao Ming reaches overall finals

7 characters? (don't use words at all):
姚 明 进 入 总 决 赛
Yao Ming enter enter overall decision game

How to do word tokenization in Chinese?

姚明进入总决赛 “Yao Ming reaches the finals”

3 words?
姚明 进入 总决赛
YaoMing reaches finals

5 words?
姚 明 进入 总 决赛
Yao Ming reaches overall finals

7 characters? (don't use words at all):
姚 明 进 入 总 决 赛
Yao Ming enter enter overall decision game

How to do word tokenization in Chinese?

姚明进入总决赛 “Yao Ming reaches the finals”

3 words?
姚明 进入 总决赛
YaoMing reaches finals

5 words?
姚 明 进入 总 决赛
Yao Ming reaches overall finals

7 characters? (don't use words at all):
姚 明 进 入 总 决 赛
Yao Ming enter enter overall decision game

Word tokenization / segmentation

So in Chinese it's common to just treat each character
(zi) as a token.
• So the segmentation step is very simple

In other languages (like Thai and Japanese), more
complex word segmentation is required.
• The standard algorithms are neural sequence models

trained by supervised machine learning.

Basic Text
Processing

Word tokenization

Basic Text
Processing

Byte Pair Encoding

Another option for text tokenization

Instead of
• white-space segmentation
• single-character segmentation

Use the data to tell us how to tokenize.

Subword tokenization (because tokens can be parts
of words as well as whole words)

Subword tokenization

Three common algorithms:
◦ Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
◦ Unigram language modeling tokenization (Kudo, 2018)
◦ WordPiece (Schuster and Nakajima, 2012)
All have 2 parts:
◦ A token learner that takes a raw training corpus and induces

a vocabulary (a set of tokens).
◦ A token segmenter that takes a raw test sentence and

tokenizes it according to that vocabulary

Byte Pair Encoding (BPE) token learner

Let vocabulary be the set of all individual characters
= {A, B, C, D,…, a, b, c, d….}

Repeat:
◦ Choose the two symbols that are most frequently

adjacent in the training corpus (say 'A', 'B')
◦ Add a new merged symbol 'AB' to the vocabulary
◦ Replace every adjacent 'A' 'B' in the corpus with 'AB'.

Until k merges have been done.

BPE token learner algorithm2.4 • TEXT NORMALIZATION 19

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V all unique characters in C # initial set of tokens is characters
for i = 1 to k do # merge tokens til k times

tL, tR Most frequent pair of adjacent tokens in C
tNEW tL + tR # make new token by concatenating
V V + tNEW # update the vocabulary
Replace each occurrence of tL, tR in C with tNEW # and update the corpus

return V

Figure 2.13 The token learner part of the BPE algorithm for taking a corpus broken up
into individual characters or bytes, and learning a vocabulary by iteratively merging tokens.
Figure adapted from Bostrom and Durrett (2020).

from the training data, greedily, in the order we learned them. (Thus the frequencies
in the test data don’t play a role, just the frequencies in the training data). So first
we segment each test sentence word into characters. Then we apply the first rule:
replace every instance of e r in the test corpus with r, and then the second rule:
replace every instance of er in the test corpus with er , and so on. By the end,
if the test corpus contained the word n e w e r , it would be tokenized as a full
word. But a new (unknown) word like l o w e r would be merged into the two
tokens low er .

Of course in real algorithms BPE is run with many thousands of merges on a very
large input corpus. The result is that most words will be represented as full symbols,
and only the very rare words (and unknown words) will have to be represented by
their parts.

2.4.4 Word Normalization, Lemmatization and Stemming
Word normalization is the task of putting words/tokens in a standard format, choos-normalization
ing a single normal form for words with multiple forms like USA and US or uh-huh
and uhhuh. This standardization may be valuable, despite the spelling information
that is lost in the normalization process. For information retrieval or information
extraction about the US, we might want to see information from documents whether
they mention the US or the USA.

Case folding is another kind of normalization. Mapping everything to lowercase folding

case means that Woodchuck and woodchuck are represented identically, which is
very helpful for generalization in many tasks, such as information retrieval or speech
recognition. For sentiment analysis and other text classification tasks, information
extraction, and machine translation, by contrast, case can be quite helpful and case
folding is generally not done. This is because maintaining the difference between,
for example, US the country and us the pronoun can outweigh the advantage in
generalization that case folding would have provided for other words.

For many natural language processing situations we also want two morpholog-
ically different forms of a word to behave similarly. For example in web search,
someone may type the string woodchucks but a useful system might want to also
return pages that mention woodchuck with no s. This is especially common in mor-
phologically complex languages like Russian, where for example the word Moscow
has different endings in the phrases Moscow, of Moscow, to Moscow, and so on.

Lemmatization is the task of determining that two words have the same root,
despite their surface differences. The words am, are, and is have the shared lemma

Byte Pair Encoding (BPE) Addendum

Most subword algorithms are run inside space-
separated tokens.
So we commonly first add a special end-of-word
symbol '__' before space in training corpus
Next, separate into letters.

BPE token learner18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

Original (very fascinating🙄) corpus:

low low low low low lowest lowest newer newer newer
newer newer newer wider wider wider new new

Add end-of-word tokens, resulting in this vocabulary:

representation

BPE token learner

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

Merge e r to er

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

BPE

Merge er _ to er_

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

BPE

Merge n e to ne

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

BPE

The next merges are:

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

BPE token segmenter algorithm
On the test data, run each merge learned from the
training data:

◦ Greedily
◦ In the order we learned them
◦ (test frequencies don't play a role)

So: merge every e r to er, then merge er _ to er_, etc.
Result:
◦ Test set "n e w e r _" would be tokenized as a full word
◦ Test set "l o w e r _" would be two tokens: "low er_"

Properties of BPE tokens

Usually include frequent words
And frequent subwords
• Which are often morphemes like -est or –er

A morpheme is the smallest meaning-bearing unit of a
language
• unlikeliest has 3 morphemes un-, likely, and -est

Basic Text
Processing

Byte Pair Encoding

Basic Text
Processing

Word Normalization and
other issues

Word Normalization

Putting words/tokens in a standard format
◦ U.S.A. or USA
◦ uhhuh or uh-huh
◦ Fed or fed
◦ am, is, be, are

Case folding

Applications like IR: reduce all letters to lower case
◦ Since users tend to use lower case
◦ Possible exception: upper case in mid-sentence?

◦ e.g., General Motors
◦ Fed vs. fed
◦ SAIL vs. sail

For sentiment analysis, MT, Information extraction
◦ Case is helpful (US versus us is important)

Lemmatization

Represent all words as their lemma, their shared root
= dictionary headword form:

◦ am, are, is ® be
◦ car, cars, car's, cars' ® car
◦ Spanish quiero (‘I want’), quieres (‘you want’)
® querer ‘want'

◦ He is reading detective stories
® He be read detective story

Lemmatization is done by Morphological Parsing

Morphemes:
◦ The small meaningful units that make up words
◦ Stems: The core meaning-bearing units
◦ Affixes: Parts that adhere to stems, often with grammatical

functions

Morphological Parsers:
◦ Parse cats into two morphemes cat and s
◦ Parse Spanish amaren (‘if in the future they would love’) into

morpheme amar ‘to love’, and the morphological features
3PL and future subjunctive.

Stemming
Reduce terms to stems, chopping off affixes crudely

This was not the map we
found in Billy Bones’s
chest, but an accurate
copy, complete in all
things-names and heights
and soundings-with the
single exception of the
red crosses and the
written notes.

Thi wa not the map we
found in Billi Bone s chest
but an accur copi complet
in all thing name and
height and sound with the
singl except of the red
cross and the written note
.

Porter Stemmer

Based on a series of rewrite rules run in series
◦ A cascade, in which output of each pass fed to next pass

Some sample rules:

20 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

be; the words dinner and dinners both have the lemma dinner. Lemmatizing each of
these forms to the same lemma will let us find all mentions of words in Russian like
Moscow. The lemmatized form of a sentence like He is reading detective stories
would thus be He be read detective story.

How is lemmatization done? The most sophisticated methods for lemmatization
involve complete morphological parsing of the word. Morphology is the study of
the way words are built up from smaller meaning-bearing units called morphemes.morpheme

Two broad classes of morphemes can be distinguished: stems—the central mor-stem
pheme of the word, supplying the main meaning— and affixes—adding “additional”affix
meanings of various kinds. So, for example, the word fox consists of one morpheme
(the morpheme fox) and the word cats consists of two: the morpheme cat and the
morpheme -s. A morphological parser takes a word like cats and parses it into the
two morphemes cat and s, or parses a Spanish word like amaren (‘if in the future
they would love’) into the morpheme amar ‘to love’, and the morphological features
3PL and future subjunctive.

The Porter Stemmer

Lemmatization algorithms can be complex. For this reason we sometimes make use
of a simpler but cruder method, which mainly consists of chopping off word-final
affixes. This naive version of morphological analysis is called stemming. One ofstemming

the most widely used stemming algorithms is the Porter (1980). The Porter stemmerPorter stemmer
applied to the following paragraph:

This was not the map we found in Billy Bones’s chest, but
an accurate copy, complete in all things-names and heights
and soundings-with the single exception of the red crosses
and the written notes.

produces the following stemmed output:
Thi wa not the map we found in Billi Bone s chest but an
accur copi complet in all thing name and height and sound
with the singl except of the red cross and the written note

The algorithm is based on series of rewrite rules run in series, as a cascade, incascade
which the output of each pass is fed as input to the next pass; here is a sampling of
the rules:

ATIONAL ! ATE (e.g., relational ! relate)
ING ! ✏ if stem contains vowel (e.g., motoring ! motor)

SSES ! SS (e.g., grasses ! grass)

Detailed rule lists for the Porter stemmer, as well as code (in Java, Python, etc.)
can be found on Martin Porter’s homepage; see also the original paper (Porter, 1980).

Simple stemmers can be useful in cases where we need to collapse across differ-
ent variants of the same lemma. Nonetheless, they do tend to commit errors of both
over- and under-generalizing, as shown in the table below (Krovetz, 1993):

Errors of Commission Errors of Omission
organization organ European Europe
doing doe analysis analyzes
numerical numerous noise noisy
policy police sparse sparsity

Dealing with complex morphology is necessary
for many languages

◦ e.g., the Turkish word:
◦ Uygarlastiramadiklarimizdanmissinizcasina
◦ `(behaving) as if you are among those whom we could not civilize’
◦ Uygar `civilized’ + las `become’

+ tir `cause’ + ama `not able’
+ dik `past’ + lar ‘plural’
+ imiz ‘p1pl’ + dan ‘abl’
+ mis ‘past’ + siniz ‘2pl’ + casina ‘as if’

Sentence Segmentation
!, ? mostly unambiguous but period “.” is very ambiguous

◦ Sentence boundary
◦ Abbreviations like Inc. or Dr.
◦ Numbers like .02% or 4.3

Common algorithm: Tokenize first: use rules or ML to
classify a period as either (a) part of the word or (b) a
sentence-boundary.

◦ An abbreviation dictionary can help

Sentence segmentation can then often be done by rules
based on this tokenization.

Basic Text
Processing

Word Normalization and
other issues

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2020. All

rights reserved. Draft of December 30, 2020.

CHAPTER

7 Neural Networks and Neural
Language Models

“[M]achines of this character can behave in a very complicated manner when
the number of units is large.”

Alan Turing (1948) “Intelligent Machines”, page 6

Neural networks are a fundamental computational tool for language process-
ing, and a very old one. They are called neural because their origins lie in the
McCulloch-Pitts neuron (McCulloch and Pitts, 1943), a simplified model of the
human neuron as a kind of computing element that could be described in terms of
propositional logic. But the modern use in language processing no longer draws on
these early biological inspirations.

Instead, a modern neural network is a network of small computing units, each
of which takes a vector of input values and produces a single output value. In this
chapter we introduce the neural net applied to classification. The architecture we
introduce is called a feedforward network because the computation proceeds iter-feedforward

atively from one layer of units to the next. The use of modern neural nets is often
called deep learning, because modern networks are often deep (have many layers).deep learning

Neural networks share much of the same mathematics as logistic regression. But
neural networks are a more powerful classifier than logistic regression, and indeed a
minimal neural network (technically one with a single ‘hidden layer’) can be shown
to learn any function.

Neural net classifiers are different from logistic regression in another way. With
logistic regression, we applied the regression classifier to many different tasks by
developing many rich kinds of feature templates based on domain knowledge. When
working with neural networks, it is more common to avoid most uses of rich hand-
derived features, instead building neural networks that take raw words as inputs
and learn to induce features as part of the process of learning to classify. We saw
examples of this kind of representation learning for embeddings in Chapter 6. Nets
that are very deep are particularly good at representation learning. For that reason
deep neural nets are the right tool for large scale problems that offer sufficient data
to learn features automatically.

In this chapter we’ll introduce feedforward networks as classifiers, and also ap-
ply them to the simple task of language modeling: assigning probabilities to word
sequences and predicting upcoming words. In subsequent chapters we’ll introduce
many other aspects of neural models, such as recurrent neural networks and the
Transformer (Chapter 9), contextual embeddings like BERT (Chapter 10), and
encoder-decoder models and attention (Chapter 11).

2 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

7.1 Units

The building block of a neural network is a single computational unit. A unit takes
a set of real valued numbers as input, performs some computation on them, and
produces an output.

At its heart, a neural unit is taking a weighted sum of its inputs, with one addi-
tional term in the sum called a bias term. Given a set of inputs x1...xn, a unit hasbias term

a set of corresponding weights w1...wn and a bias b, so the weighted sum z can be
represented as:

z = b+
∑

i

wixi (7.1)

Often it’s more convenient to express this weighted sum using vector notation; recall
from linear algebra that a vector is, at heart, just a list or array of numbers. Thusvector

we’ll talk about z in terms of a weight vector w, a scalar bias b, and an input vector
x, and we’ll replace the sum with the convenient dot product:

z = w · x+b (7.2)

As defined in Eq. 7.2, z is just a real valued number.
Finally, instead of using z, a linear function of x, as the output, neural units

apply a non-linear function f to z. We will refer to the output of this function as
the activation value for the unit, a. Since we are just modeling a single unit, theactivation

activation for the node is in fact the final output of the network, which we’ll generally
call y. So the value y is defined as:

y = a = f (z)

We’ll discuss three popular non-linear functions f () below (the sigmoid, the tanh,
and the rectified linear ReLU) but it’s pedagogically convenient to start with the
sigmoid function since we saw it in Chapter 5:sigmoid

y = σ(z) =
1

1+ e−z (7.3)

The sigmoid (shown in Fig. 7.1) has a number of advantages; it maps the output
into the range [0,1], which is useful in squashing outliers toward 0 or 1. And it’s
differentiable, which as we saw in Section ?? will be handy for learning.

Figure 7.1 The sigmoid function takes a real value and maps it to the range [0,1]. It is
nearly linear around 0 but outlier values get squashed toward 0 or 1.

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = σ(w · x+b) =
1

1+ exp(−(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = σ(w · x+b) =
1

1+ e−(w·x+b)
=

1
1+ e−(.5∗.2+.6∗.3+.1∗.9+.5) =

1
1+ e−0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh

tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez− e−z

ez + e−z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU

when x is positive, and 0 otherwise:

y = max(x,0) (7.6)

4 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

(a) (b)

Figure 7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for
different language applications or network architectures. For example, the tanh func-
tion has the nice properties of being smoothly differentiable and mapping outlier
values toward the mean. The rectifier function, on the other hand has nice properties
that result from it being very close to linear. In the sigmoid or tanh functions, very
high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated

and have derivatives very close to 0. Zero derivatives cause problems for learning,
because as we’ll see in Section 7.4, we’ll train networks by propagating an error
signal backwards, multiplying gradients (partial derivatives) from each layer of the
network; gradients that are almost 0 cause the error signal to get smaller and smaller
until it is too small to be used for training, a problem called the vanishing gradientvanishing

gradient
problem. Rectifiers don’t have this problem, since the derivative of ReLU for high
values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-
works, as with the real neurons that inspired them, comes from combining these
units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was
the proof by Minsky and Papert (1969) that a single neural unit cannot compute
some very simple functions of its input. Consider the task of computing elementary
logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are
the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

This example was first shown for the perceptron, which is a very simple neuralperceptron

unit that has a binary output and does not have a non-linear activation function. The

7.2 • THE XOR PROBLEM 5

output y of a perceptron is 0 or 1, and is computed as follows (using the same weight
w, input x, and bias b as in Eq. 7.2):

y =
{

0, if w · x+b≤ 0
1, if w · x+b > 0 (7.7)

It’s very easy to build a perceptron that can compute the logical AND and OR
functions of its binary inputs; Fig. 7.4 shows the necessary weights.

x1

x2

+1
-1

1
1

x1

x2

+1
0

1
1

(a) (b)

Figure 7.4 The weights w and bias b for perceptrons for computing logical functions. The
inputs are shown as x1 and x2 and the bias as a special node with value +1 which is multiplied
with the bias weight b. (a) logical AND, showing weights w1 = 1 and w2 = 1 and bias weight
b = −1. (b) logical OR, showing weights w1 = 1 and w2 = 1 and bias weight b = 0. These
weights/biases are just one from an infinite number of possible sets of weights and biases that
would implement the functions.

It turns out, however, that it’s not possible to build a perceptron to compute
logical XOR! (It’s worth spending a moment to give it a try!)

The intuition behind this important result relies on understanding that a percep-
tron is a linear classifier. For a two-dimensional input x1 and x2, the perception
equation, w1x1 +w2x2 +b = 0 is the equation of a line. (We can see this by putting
it in the standard linear format: x2 = (−w1/w2)x1 +(−b/w2).) This line acts as a
decision boundary in two-dimensional space in which the output 0 is assigned to alldecision

boundary
inputs lying on one side of the line, and the output 1 to all input points lying on the
other side of the line. If we had more than 2 inputs, the decision boundary becomes
a hyperplane instead of a line, but the idea is the same, separating the space into two
categories.

Fig. 7.5 shows the possible logical inputs (00, 01, 10, and 11) and the line drawn
by one possible set of parameters for an AND and an OR classifier. Notice that there
is simply no way to draw a line that separates the positive cases of XOR (01 and 10)
from the negative cases (00 and 11). We say that XOR is not a linearly separablelinearly

separable
function. Of course we could draw a boundary with a curve, or some other function,
but not a single line.

7.2.1 The solution: neural networks
While the XOR function cannot be calculated by a single perceptron, it can be cal-
culated by a layered network of units. Let’s see an example of how to do this from
Goodfellow et al. (2016) that computes XOR using two layers of ReLU-based units.
Fig. 7.6 shows a figure with the input being processed by two layers of neural units.
The middle layer (called h) has two units, and the output layer (called y) has one
unit. A set of weights and biases are shown for each ReLU that correctly computes
the XOR function.

Let’s walk through what happens with the input x = [0 0]. If we multiply each
input value by the appropriate weight, sum, and then add the bias b, we get the

6 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

0
0 1

1

x1

x2

0
0 1

1

x1

x2

0
0 1

1

x1

x2

a) x1 AND x2 b) x1 OR x2 c) x1 XOR x2

?

Figure 7.5 The functions AND, OR, and XOR, represented with input x1 on the x-axis and input x2 on the
y axis. Filled circles represent perceptron outputs of 1, and white circles perceptron outputs of 0. There is no
way to draw a line that correctly separates the two categories for XOR. Figure styled after Russell and Norvig
(2002).

x1 x2

h1 h2

y1

+1

1 -11 1

1 -2

01

+1

0

Figure 7.6 XOR solution after Goodfellow et al. (2016). There are three ReLU units, in
two layers; we’ve called them h1, h2 (h for “hidden layer”) and y1. As before, the numbers
on the arrows represent the weights w for each unit, and we represent the bias b as a weight
on a unit clamped to +1, with the bias weights/units in gray.

vector [0 -1], and we then apply the rectified linear transformation to give the output
of the h layer as [0 0]. Now we once again multiply by the weights, sum, and add
the bias (0 in this case) resulting in the value 0. The reader should work through the
computation of the remaining 3 possible input pairs to see that the resulting y values
are 1 for the inputs [0 1] and [1 0] and 0 for [0 0] and [1 1].

It’s also instructive to look at the intermediate results, the outputs of the two
hidden nodes h1 and h2. We showed in the previous paragraph that the h vector for
the inputs x = [0 0] was [0 0]. Fig. 7.7b shows the values of the h layer for all 4
inputs. Notice that hidden representations of the two input points x = [0 1] and x
= [1 0] (the two cases with XOR output = 1) are merged to the single point h = [1
0]. The merger makes it easy to linearly separate the positive and negative cases
of XOR. In other words, we can view the hidden layer of the network as forming a
representation for the input.

In this example we just stipulated the weights in Fig. 7.6. But for real examples
the weights for neural networks are learned automatically using the error backprop-
agation algorithm to be introduced in Section 7.4. That means the hidden layers will
learn to form useful representations. This intuition, that neural networks can auto-
matically learn useful representations of the input, is one of their key advantages,

7.3 • FEED-FORWARD NEURAL NETWORKS 7

0

0 1

1

x1

x2

a) The original x space

0

0 1

1

h1

h2

2

b) The new (linearly separable) h space

Figure 7.7 The hidden layer forming a new representation of the input. (b) shows the
representation of the hidden layer, h, compared to the original input representation x in (a).
Notice that the input point [0 1] has been collapsed with the input point [1 0], making it
possible to linearly separate the positive and negative cases of XOR. After Goodfellow et al.
(2016).

and one that we will return to again and again in later chapters.
Note that the solution to the XOR problem requires a network of units with non-

linear activation functions. A network made up of simple linear (perceptron) units
cannot solve the XOR problem. This is because a network formed by many layers of
purely linear units can always be reduced (i.e., shown to be computationally identical
to) a single layer of linear units with appropriate weights, and we’ve already shown
(visually, in Fig. 7.5) that a single unit cannot solve the XOR problem.

7.3 Feed-Forward Neural Networks

Let’s now walk through a slightly more formal presentation of the simplest kind of
neural network, the feedforward network. A feedforward network is a multilayerfeedforward

network
network in which the units are connected with no cycles; the outputs from units in
each layer are passed to units in the next higher layer, and no outputs are passed
back to lower layers. (In Chapter 9 we’ll introduce networks with cycles, called
recurrent neural networks.)

For historical reasons multilayer networks, especially feedforward networks, are
sometimes called multi-layer perceptrons (or MLPs); this is a technical misnomer,multi-layer

perceptrons
MLP since the units in modern multilayer networks aren’t perceptrons (perceptrons are

purely linear, but modern networks are made up of units with non-linearities like
sigmoids), but at some point the name stuck.

Simple feedforward networks have three kinds of nodes: input units, hidden
units, and output units. Fig. 7.8 shows a picture.

The input units are simply scalar values just as we saw in Fig. 7.2.
The core of the neural network is the hidden layer formed of hidden units,hidden layer

each of which is a neural unit as described in Section 7.1, taking a weighted sum of
its inputs and then applying a non-linearity. In the standard architecture, each layer
is fully-connected, meaning that each unit in each layer takes as input the outputsfully-connected

from all the units in the previous layer, and there is a link between every pair of units
from two adjacent layers. Thus each hidden unit sums over all the input units.

8 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

x1 x2

y1

xn0…

…

+1

b

…
U

W

y2 yn2

h1 h2 h3 hn1

Figure 7.8 A simple 2-layer feedforward network, with one hidden layer, one output layer,
and one input layer (the input layer is usually not counted when enumerating layers).

Recall that a single hidden unit has parameters w (the weight vector) and b (the
bias scalar). We represent the parameters for the entire hidden layer by combining
the weight vector wi and bias bi for each unit i into a single weight matrix W and
a single bias vector b for the whole layer (see Fig. 7.8). Each element Wji of the
weight matrix W represents the weight of the connection from the ith input unit xi to
the jth hidden unit h j.

The advantage of using a single matrix W for the weights of the entire layer is
that now the hidden layer computation for a feedforward network can be done very
efficiently with simple matrix operations. In fact, the computation only has three
steps: multiplying the weight matrix by the input vector x, adding the bias vector b,
and applying the activation function g (such as the sigmoid, tanh, or ReLU activation
function defined above).

The output of the hidden layer, the vector h, is thus the following, using the
sigmoid function σ :

h = σ(Wx+b) (7.8)

Notice that we’re applying the σ function here to a vector, while in Eq. 7.3 it was
applied to a scalar. We’re thus allowing σ(·), and indeed any activation function
g(·), to apply to a vector element-wise, so g[z1,z2,z3] = [g(z1),g(z2),g(z3)].

Let’s introduce some constants to represent the dimensionalities of these vectors
and matrices. We’ll refer to the input layer as layer 0 of the network, and have n0
represent the number of inputs, so x is a vector of real numbers of dimension n0,
or more formally x ∈ Rn0 , a column vector of dimensionality [n0,1]. Let’s call the
hidden layer layer 1 and the output layer layer 2. The hidden layer has dimensional-
ity n1, so h ∈ Rn1 and also b ∈ Rn1 (since each hidden unit can take a different bias
value). And the weight matrix W has dimensionality W ∈ Rn1×n0 , i.e. [n1,n0].

Take a moment to convince yourself that the matrix multiplication in Eq. 7.8 will
compute the value of each h j as σ

(∑n0
i=1 Wjixi +b j

)
.

As we saw in Section 7.2, the resulting value h (for hidden but also for hypoth-
esis) forms a representation of the input. The role of the output layer is to take
this new representation h and compute a final output. This output could be a real-
valued number, but in many cases the goal of the network is to make some sort of
classification decision, and so we will focus on the case of classification.

If we are doing a binary task like sentiment classification, we might have a single
output node, and its value y is the probability of positive versus negative sentiment.

7.3 • FEED-FORWARD NEURAL NETWORKS 9

If we are doing multinomial classification, such as assigning a part-of-speech tag, we
might have one output node for each potential part-of-speech, whose output value
is the probability of that part-of-speech, and the values of all the output nodes must
sum to one. The output layer thus gives a probability distribution across the output
nodes.

Let’s see how this happens. Like the hidden layer, the output layer has a weight
matrix (let’s call it U), but some models don’t include a bias vector b in the output
layer, so we’ll simplify by eliminating the bias vector in this example. The weight
matrix is multiplied by its input vector (h) to produce the intermediate output z.

z =Uh

There are n2 output nodes, so z ∈ Rn2 , weight matrix U has dimensionality U ∈
Rn2×n1 , and element Ui j is the weight from unit j in the hidden layer to unit i in the
output layer.

However, z can’t be the output of the classifier, since it’s a vector of real-valued
numbers, while what we need for classification is a vector of probabilities. There is
a convenient function for normalizing a vector of real values, by which we meannormalizing

converting it to a vector that encodes a probability distribution (all the numbers lie
between 0 and 1 and sum to 1): the softmax function that we saw on page ?? ofsoftmax

Chapter 5. For a vector z of dimensionality d, the softmax is defined as:

softmax(zi) =
ezi∑d
j=1 ez j

1≤ i≤ d (7.9)

Thus for example given a vector z=[0.6, 1.1, -1.5, 1.2, 3.2, -1.1], softmax(z) is
[0.055, 0.090, 0.0067, 0.10, 0.74, 0.010].

You may recall that softmax was exactly what is used to create a probability
distribution from a vector of real-valued numbers (computed from summing weights
times features) in logistic regression in Chapter 5.

That means we can think of a neural network classifier with one hidden layer
as building a vector h which is a hidden layer representation of the input, and then
running standard logistic regression on the features that the network develops in h.
By contrast, in Chapter 5 the features were mainly designed by hand via feature
templates. So a neural network is like logistic regression, but (a) with many layers,
since a deep neural network is like layer after layer of logistic regression classifiers,
and (b) rather than forming the features by feature templates, the prior layers of the
network induce the feature representations themselves.

Here are the final equations for a feedforward network with a single hidden layer,
which takes an input vector x, outputs a probability distribution y, and is parameter-
ized by weight matrices W and U and a bias vector b:

h = σ(Wx+b)

z = Uh

y = softmax(z) (7.10)

We’ll call this network a 2-layer network (we traditionally don’t count the input
layer when numbering layers, but do count the output layer). So by this terminology
logistic regression is a 1-layer network.

Let’s now set up some notation to make it easier to talk about deeper networks
of depth more than 2. We’ll use superscripts in square brackets to mean layer num-
bers, starting at 0 for the input layer. So W [1] will mean the weight matrix for the

10 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

(first) hidden layer, and b[1] will mean the bias vector for the (first) hidden layer. n j
will mean the number of units at layer j. We’ll use g(·) to stand for the activation
function, which will tend to be ReLU or tanh for intermediate layers and softmax
for output layers. We’ll use a[i] to mean the output from layer i, and z[i] to mean the
combination of weights and biases W [i]a[i−1]+b[i]. The 0th layer is for inputs, so the
inputs x we’ll refer to more generally as a[0].

Thus we can re-represent our 2-layer net from Eq. 7.10 as follows:

z[1] = W [1]a[0]+b[1]

a[1] = g[1](z[1])

z[2] = W [2]a[1]+b[2]

a[2] = g[2](z[2])

ŷ = a[2] (7.11)

Note that with this notation, the equations for the computation done at each layer are
the same. The algorithm for computing the forward step in an n-layer feedforward
network, given the input vector a[0] is thus simply:

for i in 1..n
z[i] = W [i] a[i−1] + b[i]

a[i] = g[i](z[i])
ŷ = a[n]

The activation functions g(·) are generally different at the final layer. Thus g[2]

might be softmax for multinomial classification or sigmoid for binary classification,
while ReLU or tanh might be the activation function g(·) at the internal layers.

Replacing the bias unit In describing networks, we will often use a slightly sim-
plified notation that represents exactly the same function without referring to an ex-
plicit bias node b. Instead, we add a dummy node a0 to each layer whose value will
always be 1. Thus layer 0, the input layer, will have a dummy node a[0]0 = 1, layer 1

will have a[1]0 = 1, and so on. This dummy node still has an associated weight, and
that weight represents the bias value b. For example instead of an equation like

h = σ(Wx+b) (7.12)

we’ll use:

h = σ(Wx) (7.13)

But now instead of our vector x having n values: x = x1, . . . ,xn, it will have n+
1 values, with a new 0th dummy value x0 = 1: x = x0, . . . ,xn0 . And instead of
computing each h j as follows:

h j = σ

(n0∑
i=1

Wjixi +b j

)
, (7.14)

we’ll instead use:

σ

(n0∑
i=0

Wjixi

)
, (7.15)

7.4 • TRAINING NEURAL NETS 11

x1 x2

y1

xn0…

…

+1

b

…
U

W

y2 yn2

h1 h2 h3 hn1

x1 x2

y1

xn0…

…

x0=1

…
U

W

y2 yn2

h1 h2 h3 hn1

(a) (b)

Figure 7.9 Replacing the bias node (shown in a) with x0 (b).

where the value Wj0 replaces what had been b j. Fig. 7.9 shows a visualization.
We’ll continue showing the bias as b for the learning example in the next section,

but then we’ll switch to this simplified notation without explicit bias terms for the
rest of the book.

7.4 Training Neural Nets

A feedforward neural net is an instance of supervised machine learning in which we
know the correct output y for each observation x. What the system produces, via
Eq. 7.11, is ŷ, the system’s estimate of the true y. The goal of the training procedure
is to learn parameters W [i] and b[i] for each layer i that make ŷ for each training
observation as close as possible to the true y.

In general, we do all this by drawing on the methods we introduced in Chapter 5
for logistic regression, so the reader should be comfortable with that chapter before
proceeding.

First, we’ll need a loss function that models the distance between the system
output and the gold output, and it’s common to use the loss function used for logistic
regression, the cross-entropy loss.

Second, to find the parameters that minimize this loss function, we’ll use the
gradient descent optimization algorithm introduced in Chapter 5.

Third, gradient descent requires knowing the gradient of the loss function, the
vector that contains the partial derivative of the loss function with respect to each of
the parameters. Here is one part where learning for neural networks is more complex
than for logistic regression. In logistic regression, for each observation we could
directly compute the derivative of the loss function with respect to an individual w
or b. But for neural networks, with millions of parameters in many layers, it’s much
harder to see how to compute the partial derivative of some weight in layer 1 when
the loss is attached to some much later layer. How do we partial out the loss over all
those intermediate layers?

The answer is the algorithm called error backpropagation or reverse differen-
tiation.

7.4.1 Loss function
The cross-entropy loss that is used in neural networks is the same one we saw forcross-entropy

loss
logistic regression.

In fact, if the neural network is being used as a binary classifier, with the sig-

12 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

moid at the final layer, the loss function is exactly the same as we saw with logistic
regression in Eq. ??:

LCE(ŷ,y) =− log p(y|x) = − [y log ŷ+(1− y) log(1− ŷ)] (7.16)

What about if the neural network is being used as a multinomial classifier? Let y be
a vector over the C classes representing the true output probability distribution. The
cross-entropy loss here is

LCE(ŷ,y) =−
C∑

i=1

yi log ŷi (7.17)

We can simplify this equation further. Assume this is a hard classification task,
meaning that only one class is the correct one, and that there is one output unit in y
for each class. If the true class is i, then y is a vector where yi = 1 and y j = 0 ∀ j 6= i.
A vector like this, with one value=1 and the rest 0, is called a one-hot vector. The
terms in the sum in Eq. 7.17 will be 0 except for the term corresponding to the true
class, i.e.:

LCE(ŷ,y) = −
K∑

k=1

1{y = k} log ŷi

= −
K∑

k=1

1{y = k} log p̂(y = k|x)

= −
K∑

k=1

1{y = k} log
ezk∑K
j=1 ez j

(7.18)

Hence the cross-entropy loss is simply the log of the output probability correspond-
ing to the correct class, and we therefore also call this the negative log likelihood
loss:negative log

likelihood loss

LCE(ŷ,y) = − log ŷi, (where i is the correct class) (7.19)

Plugging in the softmax formula from Eq. 7.9, and with K the number of classes:

LCE(ŷ,y) = − log
ezi∑K
j=1 ez j

(where i is the correct class) (7.20)

7.4.2 Computing the Gradient
How do we compute the gradient of this loss function? Computing the gradient
requires the partial derivative of the loss function with respect to each parameter.
For a network with one weight layer and sigmoid output (which is what logistic
regression is), we could simply use the derivative of the loss that we used for logistic
regression in Eq. 7.21 (and derived in Section ??):

∂LCE(w,b)
∂w j

= (ŷ− y) x j

= (σ(w · x+b)− y) x j (7.21)

7.4 • TRAINING NEURAL NETS 13

Or for a network with one hidden layer and softmax output, we could use the deriva-
tive of the softmax loss from Eq. ??:

∂LCE

∂wk
= (1{y = k}− p(y = k|x))xk

=

(
1{y = k}− exp(wk · x+bk)∑K

j=1 exp(w j · x+b j)

)
xk (7.22)

But these derivatives only give correct updates for one weight layer: the last one!
For deep networks, computing the gradients for each weight is much more complex,
since we are computing the derivative with respect to weight parameters that appear
all the way back in the very early layers of the network, even though the loss is
computed only at the very end of the network.

The solution to computing this gradient is an algorithm called error backprop-
agation or backprop (Rumelhart et al., 1986). While backprop was invented spe-error back-

propagation
cially for neural networks, it turns out to be the same as a more general procedure
called backward differentiation, which depends on the notion of computation
graphs. Let’s see how that works in the next subsection.

7.4.3 Computation Graphs
A computation graph is a representation of the process of computing a mathematical
expression, in which the computation is broken down into separate operations, each
of which is modeled as a node in a graph.

Consider computing the function L(a,b,c) = c(a+2b). If we make each of the
component addition and multiplication operations explicit, and add names (d and e)
for the intermediate outputs, the resulting series of computations is:

d = 2∗b

e = a+d

L = c∗ e

We can now represent this as a graph, with nodes for each operation, and di-
rected edges showing the outputs from each operation as the inputs to the next, as
in Fig. 7.10. The simplest use of computation graphs is to compute the value of
the function with some given inputs. In the figure, we’ve assumed the inputs a = 3,
b = 1, c = −2, and we’ve shown the result of the forward pass to compute the re-
sult L(3,1,−2) = −10. In the forward pass of a computation graph, we apply each
operation left to right, passing the outputs of each computation as the input to the
next node.

7.4.4 Backward differentiation on computation graphs
The importance of the computation graph comes from the backward pass, which
is used to compute the derivatives that we’ll need for the weight update. In this
example our goal is to compute the derivative of the output function L with respect
to each of the input variables, i.e., ∂L

∂a , ∂L
∂b , and ∂L

∂c . The derivative ∂L
∂a , tells us how

much a small change in a affects L.
Backwards differentiation makes use of the chain rule in calculus. Suppose wechain rule

are computing the derivative of a composite function f (x) = u(v(x)). The derivative

14 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

e=a+d

d = 2b L=ce

3

1

-2

e=5

d=2 L=-10

forward pass

a

b

c

Figure 7.10 Computation graph for the function L(a,b,c)= c(a+2b), with values for input
nodes a = 3, b = 1, c =−2, showing the forward pass computation of L.

of f (x) is the derivative of u(x) with respect to v(x) times the derivative of v(x) with
respect to x:

d f
dx

=
du
dv
· dv

dx
(7.23)

The chain rule extends to more than two functions. If computing the derivative of a
composite function f (x) = u(v(w(x))), the derivative of f (x) is:

d f
dx

=
du
dv
· dv

dw
· dw

dx
(7.24)

Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :

∂L
∂c

= e (7.25)

For the other two, we’ll need to use the chain rule:

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

(7.26)

Eq. 7.26 thus requires five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and ∂d
∂b ,

which are as follows (making use of the fact that the derivative of a sum is the sum
of the derivatives):

L = ce :
∂L
∂e

= c,
∂L
∂c

= e

e = a+d :
∂e
∂a

= 1,
∂e
∂d

= 1

d = 2b :
∂d
∂b

= 2

In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)

7.4 • TRAINING NEURAL NETS 15

to compute these derivatives. Fig. 7.11 shows the backward pass. At each node we
need to compute the local partial derivative with respect to the parent, multiply it by
the partial derivative that is being passed down from the parent, and then pass it to
the child.

e=d+a

d = 2b L=ce

a=3

b=1

e=5

d=2 L=-10

∂L=1∂L

∂L=-4∂b ∂L=-2∂d

a

b

c

∂L=-2∂a

∂L=5∂c

∂L =-2∂e∂L=-2∂e
∂e =1∂d

∂L =5∂c

∂d =2∂b

∂e =1∂a

backward pass
c=-2

Figure 7.11 Computation graph for the function L(a,b,c) = c(a+2b), showing the back-
ward pass computation of ∂L

∂a , ∂L
∂b , and ∂L

∂c .

Backward differentiation for a neural network

Of course computation graphs for real neural networks are much more complex.
Fig. 7.12 shows a sample computation graph for a 2-layer neural network with n0 =
2, n1 = 2, and n2 = 1, assuming binary classification and hence using a sigmoid
output unit for simplicity. The function that the computation graph is computing is:

z[1] = W [1]x+b[1]

a[1] = ReLU(z[1])

z[2] = W [2]a[1]+b[2]

a[2] = σ(z[2])

ŷ = a[2] (7.27)

The weights that need updating (those for which we need to know the partial
derivative of the loss function) are shown in orange. In order to do the backward
pass, we’ll need to know the derivatives of all the functions in the graph. We already
saw in Section ?? the derivative of the sigmoid σ :

dσ(z)
dz

= σ(z)(1−σ(z)) (7.28)

We’ll also need the derivatives of each of the other activation functions. The
derivative of tanh is:

d tanh(z)
dz

= 1− tanh2(z) (7.29)

The derivative of the ReLU is

d ReLU(z)
dz

=

{
0 f or x < 0
1 f or x≥ 0 (7.30)

16 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

z[2] =
+ a[2] = σ

a[1] =
ReLU

z[1] =
+

b[1] *

*

*

*

x1

x2

a[1] =
ReLU

z[1] =
+

b[1]

*

*

w[2]
11

w[1]
11

w[1]
12

w[1]
21

w[1]
22 b[2]

w[2]
12

L (a[2],y)
1

2

1

Figure 7.12 Sample computation graph for a simple 2-layer neural net (= 1 hidden layer)
with two input dimensions and 2 hidden dimensions.

7.4.5 More details on learning
Optimization in neural networks is a non-convex optimization problem, more com-
plex than for logistic regression, and for that and other reasons there are many best
practices for successful learning.

For logistic regression we can initialize gradient descent with all the weights and
biases having the value 0. In neural networks, by contrast, we need to initialize the
weights with small random numbers. It’s also helpful to normalize the input values
to have 0 mean and unit variance.

Various forms of regularization are used to prevent overfitting. One of the most
important is dropout: randomly dropping some units and their connections fromdropout

the network during training (Hinton et al. 2012, Srivastava et al. 2014). Tuning
of hyperparameters is also important. The parameters of a neural network are thehyperparameter

weights W and biases b; those are learned by gradient descent. The hyperparameters
are things that are chosen by the algorithm designer; optimal values are tuned on a
devset rather than by gradient descent learning on the training set. Hyperparameters
include the learning rate η , the mini-batch size, the model architecture (the number
of layers, the number of hidden nodes per layer, the choice of activation functions),
how to regularize, and so on. Gradient descent itself also has many architectural
variants such as Adam (Kingma and Ba, 2015).

Finally, most modern neural networks are built using computation graph for-
malisms that make it easy and natural to do gradient computation and parallelization
onto vector-based GPUs (Graphic Processing Units). PyTorch (Paszke et al., 2017)
and TensorFlow (Abadi et al., 2015) are two of the most popular. The interested
reader should consult a neural network textbook for further details; some sugges-
tions are at the end of the chapter.

7.5 Neural Language Models

As our first application of neural networks, let’s consider language modeling: pre-
dicting upcoming words from prior word context.

Neural net-based language models turn out to have many advantages over the n-
gram language models of Chapter 3. Among these are that neural language models

7.5 • NEURAL LANGUAGE MODELS 17

don’t need smoothing, they can handle much longer histories, and they can general-
ize over contexts of similar words. For a training set of a given size, a neural lan-
guage model has much higher predictive accuracy than an n-gram language model.
Furthermore, neural language models underlie many of the models we’ll introduce
for tasks like machine translation, dialog, and language generation.

On the other hand, there is a cost for this improved performance: neural net
language models are strikingly slower to train than traditional language models, and
so for many tasks an n-gram language model is still the right tool.

In this chapter we’ll describe simple feedforward neural language models, first
introduced by Bengio et al. (2003). Modern neural language models are generally
not feedforward but recurrent, using the technology that we will introduce in Chap-
ter 9.

A feedforward neural LM is a standard feedforward network that takes as in-
put at time t a representation of some number of previous words (wt−1,wt−2, etc.)
and outputs a probability distribution over possible next words. Thus—like the n-
gram LM—the feedforward neural LM approximates the probability of a word given
the entire prior context P(wt |w1 : t−1) by approximating based on the N previous
words:

P(wt |w1, . . . ,wt−1)≈ P(wt |wt−N+1, . . . ,wt−1) (7.31)

In the following examples we’ll use a 4-gram example, so we’ll show a net to esti-
mate the probability P(wt = i|wt−1,wt−2,wt−3).

7.5.1 Embeddings
In neural language models, the prior context is represented by embeddings of the
previous words. Representing the prior context as embeddings, rather than by ex-
act words as used in n-gram language models, allows neural language models to
generalize to unseen data much better than n-gram language models. For example,
suppose we’ve seen this sentence in training:

I have to make sure that the cat gets fed.

but have never seen the words “gets fed” after the word “dog”. Our test set has the
prefix “I forgot to make sure that the dog gets”. What’s the next word? An n-gram
language model will predict “fed” after “that the cat gets”, but not after “that the dog
gets”. But a neural LM, knowing that “cat” and “dog” have similar embeddings, will
be able to generalize from the “cat” context to assign a high enough probability to
“fed” even after seeing “dog”.

Let’s see how this works in practice. For now we’ll assume we already have
an embedding dictionary E that gives us, for each word in our vocabulary V , the
embedding for that word.

Fig. 7.13 shows a sketch of this simplified feedforward neural language model
with N=3; we have a moving window at time t with an embedding vector represent-
ing each of the 3 previous words (words wt−1, wt−2, and wt−3). These 3 vectors are
concatenated together to produce x, the input layer of a neural network whose output
is a softmax with a probability distribution over words. Thus y42, the value of output
node 42 is the probability of the next word wt being V42, the vocabulary word with
index 42.

The model shown in Fig. 7.13 is quite sufficient, assuming we have already
learned the embeddings separately by a method like the word2vec methods of Chap-
ter 6. Relying on another algorithm to have already learned an embedding represen-

18 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

h1 h2

y1

h3 hdh…

…

U

W

y42 y|V|

3d⨉1

Hidden layer

Output layer
softmax

…

thanks forand... ...all the ?

wt-1

wt-2 wtwt-3

dh⨉3d

dh⨉1

|V|⨉dh

|V|⨉1

Projection layer
embeddings

…

p(fish|…)p(aardvark|…) p(zebra|…)p(for|…)

… y59 y35102
^^^ ^ ^

embedding for
word 45180

embedding for
word 9925

embedding for
word 35

wt-1

E

Figure 7.13 A simplified view of a feedforward neural language model moving through
a text. At each timestep t the network takes the 3 context words, converts each to a d-
dimensional embedding, and concatenates the 3 embeddings together to get the 1×Nd unit
input layer x for the network. These units are multiplied by a weight matrix W and then an
activation function is applied element-wise to produce the hidden layer h, which is then mul-
tiplied by another weight matrix U . Finally, a softmax output layer predicts at each node i the
probability that the next word wt will be vocabulary word Vi. (This picture is simplified be-
cause it assumes we just look up in an embedding dictionary E the d-dimensional embedding
vector for each word, precomputed by an algorithm like word2vec.)

tation for input words is called pretraining. If those pretrained embeddings arepretraining

sufficient for your purposes, then this is all you need.
However, often we’d like to learn the embeddings simultaneously with training

the network. This is true when the task the network is designed for (sentiment clas-
sification, or translation, or parsing) places strong constraints on what makes a good
representation.

Let’s therefore show an architecture that allows the embeddings to be learned.
To do this, we’ll add an extra layer to the network, and propagate the error all the
way back to the embedding vectors, starting with embeddings with random values
and slowly moving toward sensible representations.

For this to work at the input layer, instead of pretrained embeddings, we’re going
to represent each of the N previous words as a one-hot vector of length |V |, i.e., with
one dimension for each word in the vocabulary. A one-hot vector is a vector thatone-hot vector

has one element equal to 1—in the dimension corresponding to that word’s index in
the vocabulary— while all the other elements are set to zero.

Thus in a one-hot representation for the word “toothpaste”, supposing it is index
5 in the vocabulary, x5 = 1, and xi = 0 ∀i 6= 5, as shown here:

[0 0 0 0 1 0 0 ... 0 0 0 0]

1 2 3 4 5 6 7 |V|

Fig. 7.14 shows the additional layers needed to learn the embeddings during LM
training. Here the N=3 context words are represented as 3 one-hot vectors, fully
connected to the embedding layer via 3 instantiations of the embedding matrix E.

7.5 • NEURAL LANGUAGE MODELS 19

h1 h2

y1

h3 hdh…

…

U

W

y34 y|V|

Projection layer
embeddings

3d⨉1

Hidden layer

Output layer
softmax

…

thanks forand... ...all the fish
wt-1wt-2 wtwt-3

dh⨉3d

dh⨉1

|V|⨉dh

|V|⨉1

Input layer
one-hot vectors

“for” = index
word 59

0 0 1 00

1 |V|59

0 0 1 00

1 |V|45180

0 0 1 00

1 |V|9925

0 0

“all” = index
word 9925

“the” = index
word 45180

E

|V|⨉1

E is shared
across words

d⨉|V|

…

p(do|…)p(aardvark|…) p(zebra|…)p(fish|…)

… y42 y35102
^^^ ^ ^

wt=fish

L = −log P(fish | for, all, the)

Figure 7.14 Learning all the way back to embeddings. Notice that the embedding matrix
E is shared among the 3 context words.

Note that we don’t want to learn separate weight matrices for mapping each of the
3 previous words to the projection layer, we want one single embedding dictionary
E that’s shared among these three. That’s because over time, many different words
will appear as wt−2 or wt−1, and we’d like to just represent each word with one
vector, whichever context position it appears in. The embedding weight matrix E
thus has a column for each word, each a column vector of d dimensions, and hence
has dimensionality d×|V |.

Let’s walk through the forward pass of Fig. 7.14.

1. Select three embeddings from E: Given the three previous words, we look
up their indices, create 3 one-hot vectors, and then multiply each by the em-
bedding matrix E. Consider wt−3. The one-hot vector for ‘the’ (index 35) is
multiplied by the embedding matrix E, to give the first part of the first hidden
layer, called the projection layer. Since each row of the input matrix E is justprojection layer

an embedding for a word, and the input is a one-hot column vector xi for word
Vi, the projection layer for input w will be Exi = ei, the embedding for word i.
We now concatenate the three embeddings for the context words.

2. Multiply by W: We now multiply by W (and add b) and pass through the
rectified linear (or other) activation function to get the hidden layer h.

3. Multiply by U: h is now multiplied by U
4. Apply softmax: After the softmax, each node i in the output layer estimates

the probability P(wt = i|wt−1,wt−2,wt−3)

In summary, if we use e to represent the projection layer, formed by concate-
nating the 3 embeddings for the three context vectors, the equations for a neural

20 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

language model become:

e = (Ex1,Ex2, ...,Ex) (7.32)

h = σ(We+b) (7.33)

z = Uh (7.34)

ŷ = softmax(z) (7.35)

7.5.2 Training the neural language model
To train the model, i.e. to set all the parameters θ = E,W,U,b, we do gradient
descent (Fig. ??), using error backpropagation on the computation graph to compute
the gradient. Training thus not only sets the weights W and U of the network, but
also as we’re predicting upcoming words, we’re learning the embeddings E for each
words that best predict upcoming words.

Generally training proceeds by taking as input a very long text, concatenating all
the sentences, starting with random weights, and then iteratively moving through the
text predicting each word wt . At each word wt , we use the cross-entropy (negative
log likelihood) loss. Recall that the general form for this (repeated from Eq. 7.19 is:

LCE(ŷ,y) = − log ŷi, (where i is the correct class) (7.36)

For language modeling, the classes are are the word in the vocabulary, so ŷi here
means the probability that the model assigns to the correct next word wt :

LCE =− log p(wt |wt−1, ...,wt−n+1) (7.37)

The parameter update for stochastic gradient descent for this loss from step s to s+1
is then:

θ
s+1 = θ

s−η
∂ − log p(wt |wt−1, ...,wt−n+1)

∂θ
(7.38)

This gradient can be computed in any standard neural network framework which
will then backpropagate through θ = E,W,U,b.

Training the parameters to minimize loss will result both in an algorithm for
language modeling (a word predictor) but also a new set of embeddings E that can
be used as word representations for other tasks.

7.6 Summary

• Neural networks are built out of neural units, originally inspired by human
neurons but now simply an abstract computational device.

• Each neural unit multiplies input values by a weight vector, adds a bias, and
then applies a non-linear activation function like sigmoid, tanh, or rectified
linear.

• In a fully-connected, feedforward network, each unit in layer i is connected
to each unit in layer i+1, and there are no cycles.

• The power of neural networks comes from the ability of early layers to learn
representations that can be utilized by later layers in the network.

• Neural networks are trained by optimization algorithms like gradient de-
scent.

BIBLIOGRAPHICAL AND HISTORICAL NOTES 21

• Error backpropagation, backward differentiation on a computation graph,
is used to compute the gradients of the loss function for a network.

• Neural language models use a neural network as a probabilistic classifier, to
compute the probability of the next word given the previous n words.

• Neural language models can use pretrained embeddings, or can learn embed-
dings from scratch in the process of language modeling.

Bibliographical and Historical Notes
The origins of neural networks lie in the 1940s McCulloch-Pitts neuron (McCul-
loch and Pitts, 1943), a simplified model of the human neuron as a kind of com-
puting element that could be described in terms of propositional logic. By the late
1950s and early 1960s, a number of labs (including Frank Rosenblatt at Cornell and
Bernard Widrow at Stanford) developed research into neural networks; this phase
saw the development of the perceptron (Rosenblatt, 1958), and the transformation
of the threshold into a bias, a notation we still use (Widrow and Hoff, 1960).

The field of neural networks declined after it was shown that a single percep-
tron unit was unable to model functions as simple as XOR (Minsky and Papert,
1969). While some small amount of work continued during the next two decades,
a major revival for the field didn’t come until the 1980s, when practical tools for
building deeper networks like error backpropagation became widespread (Rumel-
hart et al., 1986). During the 1980s a wide variety of neural network and related
architectures were developed, particularly for applications in psychology and cog-
nitive science (Rumelhart and McClelland 1986b, McClelland and Elman 1986,
Rumelhart and McClelland 1986a, Elman 1990), for which the term connection-
ist or parallel distributed processing was often used (Feldman and Ballard 1982,connectionist

Smolensky 1988). Many of the principles and techniques developed in this period
are foundational to modern work, including the ideas of distributed representations
(Hinton, 1986), recurrent networks (Elman, 1990), and the use of tensors for com-
positionality (Smolensky, 1990).

By the 1990s larger neural networks began to be applied to many practical lan-
guage processing tasks as well, like handwriting recognition (LeCun et al. 1989) and
speech recognition (Morgan and Bourlard 1990). By the early 2000s, improvements
in computer hardware and advances in optimization and training techniques made it
possible to train even larger and deeper networks, leading to the modern term deep
learning (Hinton et al. 2006, Bengio et al. 2007). We cover more related history in
Chapter 9 and Chapter 26.

There are a number of excellent books on the subject. Goldberg (2017) has
superb coverage of neural networks for natural language processing. For neural
networks in general see Goodfellow et al. (2016) and Nielsen (2015).

22 Chapter 7 • Neural Networks and Neural Language Models

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Leven-
berg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah,
C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Tal-
war, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas,
F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu,
Y., and Zheng, X. (2015). TensorFlow: Large-scale ma-
chine learning on heterogeneous systems.. Software avail-
able from tensorflow.org.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003).
A neural probabilistic language model. Journal of machine
learning research 3(Feb), 1137–1155.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H.
(2007). Greedy layer-wise training of deep networks.
NeurIPS.

Elman, J. L. (1990). Finding structure in time. Cognitive
science 14(2), 179–211.

Feldman, J. A. and Ballard, D. H. (1982). Connectionist
models and their properties. Cognitive Science 6, 205–254.

Goldberg, Y. (2017). Neural Network Methods for Natural
Language Processing, Vol. 10 of Synthesis Lectures on Hu-
man Language Technologies. Morgan & Claypool.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press.

Hinton, G. E. (1986). Learning distributed representations
of concepts. COGSCI.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast
learning algorithm for deep belief nets. Neural computation
18(7), 1527–1554.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever,
I., and Salakhutdinov, R. R. (2012). Improving neural
networks by preventing co-adaptation of feature detectors.
arXiv preprint arXiv:1207.0580.

Kingma, D. and Ba, J. (2015). Adam: A method for stochas-
tic optimization. ICLR 2015.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropa-
gation applied to handwritten zip code recognition. Neural
computation 1(4), 541–551.

McClelland, J. L. and Elman, J. L. (1986). The TRACE
model of speech perception. Cognitive Psychology 18, 1–
86.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of
ideas immanent in nervous activity. Bulletin of Mathemati-
cal Biophysics 5, 115–133.

Minsky, M. and Papert, S. (1969). Perceptrons. MIT Press.

Morgan, N. and Bourlard, H. (1990). Continuous speech
recognition using multilayer perceptrons with hidden
markov models. ICASSP.

Nielsen, M. A. (2015). Neural networks and Deep learning.
Determination Press USA.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. (2017). Automatic differentiation in pytorch. NIPS-W.

Rosenblatt, F. (1958). The perceptron: A probabilistic model
for information storage and organization in the brain. Psy-
chological review 65(6), 386–408.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
(1986). Learning internal representations by error propa-
gation. Rumelhart, D. E. and McClelland, J. L. (Eds.), Par-
allel Distributed Processing, Vol. 2, 318–362. MIT Press.

Rumelhart, D. E. and McClelland, J. L. (1986a). On learn-
ing the past tense of English verbs. Rumelhart, D. E. and
McClelland, J. L. (Eds.), Parallel Distributed Processing,
Vol. 2, 216–271. MIT Press.

Rumelhart, D. E. and McClelland, J. L. (Eds.). (1986b). Par-
allel Distributed Processing. MIT Press.

Russell, S. and Norvig, P. (2002). Artificial Intelligence: A
Modern Approach (2nd Ed.). Prentice Hall.

Smolensky, P. (1988). On the proper treatment of connec-
tionism. Behavioral and brain sciences 11(1), 1–23.

Smolensky, P. (1990). Tensor product variable binding and
the representation of symbolic structures in connectionist
systems. Artificial intelligence 46(1-2), 159–216.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. R. (2014). Dropout: a simple way
to prevent neural networks from overfitting. JMLR 15(1),
1929–1958.

Widrow, B. and Hoff, M. E. (1960). Adaptive switching cir-
cuits. IRE WESCON Convention Record, Vol. 4.

Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 524–533,
MIT, Massachusetts, USA, 9-11 October 2010. c�2010 Association for Computational Linguistics

Automatic Analysis of Rhythmic Poetry
with Applications to Generation and Translation

Erica Greene
Haverford College
370 Lancaster Ave.
Haverford, PA 19041

ericagreene@gmail.com

Tugba Bodrumlu
Dept. of Computer Science
Univ. of Southern California
Los Angeles, CA 90089
bodrumlu@cs.usc.edu

Kevin Knight
Information Sciences Institute
Univ. of Southern California

4676 Admiralty Way
Marina del Rey, CA 90292

knight@isi.edu

Abstract

We employ statistical methods to analyze,
generate, and translate rhythmic poetry. We
first apply unsupervised learning to reveal
word-stress patterns in a corpus of raw poetry.
We then use these word-stress patterns, in ad-
dition to rhyme and discourse models, to gen-
erate English love poetry. Finally, we trans-
late Italian poetry into English, choosing tar-
get realizations that conform to desired rhyth-
mic patterns.

1 Introduction

When it comes to generating creative language (po-
ems, stories, jokes, etc), people have massive advan-
tages over machines:

• people can construct grammatical, sensible ut-
terances,

• people have a wide range of topics to talk
about, and

• people experience joy and heart-break.
On the other hand, machines have some minor ad-
vantages:

• a machine can easily come up with a five-
syllable word that starts with p and rhymes
with early, and

• a machine can analyze very large online text
repositories of human works and maintain
these in memory.

In this paper we concentrate on statistical methods
applied to the analysis, generation, and translation
of poetry. By analysis, we mean extracting patterns

from existing online poetry corpora. We use these
patterns to generate new poems and translate exist-
ing poems. When translating, we render target text
in a rhythmic scheme determined by the user.
Poetry generation has received research attention

in the past (Manurung et al., 2000; Gervas, 2001;
Diaz-Agudo et al., 2002; Manurung, 2003; Wong
and Chun, 2008; Tosa et al., 2008; Jiang and Zhou,
2008; Netzer et al., 2009), including the use of
statistical methods, although there is a long way
to go. One difficulty has been the evaluation of
machine-generated poetry—this continues to be a
difficulty in the present paper. Less research effort
has been spent on poetry analysis and poetry trans-
lation, which we tackle here.

2 Terms

Meter refers to the rhythmic beat of poetic text when
read aloud. Iambic is a common meter that sounds
like da-DUM da-DUM da-DUM, etc. Each da-
DUM is called a foot. Anapest meter sounds like
da-da-DUM da-da-DUM da-da-DUM, etc.
Trimeter refers to a line with three feet, pentame-

ter to a line with five feet, etc. Examples include:

• a VE-ry NAS-ty CUT (iambic trimeter)
• shall I com-PARE thee TO a SUM-mer’s
DAY? (iambic pentameter)

• twas the NIGHT before CHRIST-mas and
ALL through the HOUSE (anapest tetrame-
ter)

Classical English sonnets are poems most often
composed of 14 lines of iambic pentameter.

524

3 Analysis
We focus on English rhythmic poetry. We define
the following analysis task: given poetic lines in
a known meter (such as sonnets written in iambic
pentameter), assign a syllable-stress pattern to each
word in each line. Making such decisions is part of
the larger task of reading poetry aloud. Later in the
paper, we will employ the concrete statistical tables
from analysis to the problems of poetry generation
and translation.
We create a test set consisting of 70 lines from

Shakespeare’s sonnets, which are written in iambic
pentameter. Here is an input line annotated with
gold output.
shall i compare thee to a summers day
| | /\ | | | /\ |
S S* S S* S S* S S* S S*

S refers to an unstressed syllable, and S* refers to
a stressed syllable. One of the authors created gold-
standard output by listening to Internet recordings
of the 70 lines and marking words according to the
speaker’s stress. The task evaluation consists of per-
word accuracy (how many words are assigned the
correct stress pattern) and per-line accuracy (how
many lines have all words analyzed perfectly).
This would seem simple enough, if we are armed

with something like the CMU pronunciation dictio-
nary: we look up syllable-stress patterns for each
word token and lay these down on top of the se-
quence S S* S S* S S* S S* S S*. However, there
are difficulties:

• The test data contains many words that are un-
known to the CMU dictionary.

• Even when all words are known, many lines
do not seem to contain 10 syllables. Some
lines contain eleven words.

• Spoken recordings include stress reversals,
such as poin-TING instead of POIN-ting.

• Archaic pronunciations abound, such as
PROV-ed (two syllables) instead of PROVED
(one syllable).

• In usage, syllables are often subtracted (PRIS-
ner instead of PRIS-o-ner), added (SOV-e-
reign instead of SOV-reign), or merged.

• Some one-syllable words are mostly stressed,
and others mostly unstressed, but the dictio-

e� P(m|e) � m

Figure 1: Finite-state transducer (FST) for mapping se-
quences of English words (e) onto sequences of S* and S
symbols (m), representing stressed and unstressed sylla-
bles.

nary provides no guidance. When we gener-
ate rhythmic text, it is important to use one-
syllable words properly. For example, we
would be happy for an iambic generator to
output big thoughts are not quite here, but not
quite big thoughts are not here.

Therefore, we take a different tack and apply un-
supervised learning to acquire word-stress patterns
directly from raw poetry, without relying on a dic-
tionary. This method easily ports to other languages,
where dictionaries may not exist and where mor-
phology is a severe complication. It may also be
used for dead languages.
For raw data, we start with all Shakespeare son-

nets (17,134 word tokens). Because our learning is
unsupervised, we do not mind including our 70-line
test set in this data (open testing).
Figures 1 and 2 show a finite-state transducer

(FST) that converts sequences of English words to
sequences of S* and S symbols. The FST’s transi-
tions initially map each English word onto all out-
put sub-sequences of lengths 1 to 4 (i.e., S, S*, S-S,
S-S*, S*-S, S*-S*, S-S-S, . . .) plus the sequences
S-S*-S-S*-S and S*-S-S*-S-S*. Initial probabilities
are set to 1/32. The FST’s main loop allows it to
process a sequence of word tokens. If the same word
appears twice in a sequence, then it may receive two
different pronunciations, since the mapping is prob-
abilistic. However, a token’s syllable/stress pattern
is chosen independently of other tokens in the se-
quence; we look at relaxing this assumption later.
We next use finite-state EM training1 to train the

machine on input/output sequences such as these:
from fairest creatures we desire increase
S S* S S* S S* S S* S S*

but thou contracted to thine own bright eyes
S S* S S* S S* S S* S S*

1All operations in this paper are carried out with the generic
finite-state toolkit Carmel (Graehl, 1997). For example, the
train-cascade command uses EM to learn probabilities in an ar-
bitrary FST cascade from end-to-end input/output string pairs.

525

Figure 2: An efficient FST implementing P(m|e). This machine maps sequences of English words onto sequences of
S* and S symbols, representing stressed and unstressed syllables. Initially every vocabulary word has 32 transitions,
each with probability 1/32. After EM training, far fewer transitions remain.

526

Figure 3: An FST that accepts any of four input meters
and deterministically normalizes its input to strict iambic
pentameter. We call this FST norm.

e� P(m|e) � m� norm � m

Figure 4: FST cascade that encodes a loose interpretation
of iambic pentameter. The norm FST accepts any of four
near-iambic-pentameter sequences and normalizes them
into strict iambic pentameter.

Note that the output sequences are all the same,
representing our belief that each line should be read
as iambic pentameter.2 After we train the FST,
we can use Viterbi decoding to recover the highest-
probability alignments, e.g.:
from fairest creatures we desire increase
| | /| \ | /\ /\
S S* S S* S S* S S* S S*

but thou contracted to thine own bright eyes
| | /| \ | | | | |
S S* S S* S S* S S* S S*

Note that the first example contains an error—the
words fairest and creatures should each be read with
two syllables. There are many such errors. We next
improve the system in two ways: more data and bet-
ter modeling.
First, we augment the Shakespeare sonnets with

data from the website sonnets.org, increasing the
number of word tokens from 17,134 to 235,463. The
sonnets.org data is noisier, because it contains some
non-iambic-pentameter poetry, but overall we find
that alignments improve, e.g.:
from fairest creatures we desire increase
| /\ /\ | /\ /\
S S* S S* S S* S S* S S*

Second, we loosen our model. When we listen to
recordings, we discover that not all lines are read S
S* S S* S S* S S* S S*. Indeed, some lines in our
data contain eleven words—these are unexplainable
by the EM training system. We also observe that

2We can augment the data with lines of poetry written in
meters other than iambic pentameter, so long as we supply the
desired output pattern for each input line.

Training Training Test token Test line
data tokens accuracy accuracy
Shakespeare 17,134 82.3% 55.7%
sonnets.org 235,463 94.2% 81.4%

Figure 5: Analysis task accuracy.

poets often use the word mother (S* S) at the begin-
nings and ends of lines, where it theoretically should
not appear.
Two well-known variations explain these facts.

One is optional inversion of the first foot (S S*
� S* S). Second is the optional addition of an
eleventh unstressed syllable (the feminine ending).
These variations yield four possible syllable-stress
sequences:
S S* S S* S S* S S* S S*
S* S S S* S S* S S* S S*
S S* S S* S S* S S* S S* S
S* S S S* S S* S S* S S* S

We want to offer EM the freedom to analyze lines
into any of these four variations. We therefore con-
struct a second FST (Figure 3), norm, which maps
all four sequences onto the canonical pattern S S*
S S* S S* S S* S S*. We then arrange both FSTs
in a cascade (Figure 4), and we train the whole
cascade on the same input/output sequences as be-
fore. Because norm has no trainable parameters, we
wind up training only the lexical mapping parame-
ters. Viterbi decoding through the two-step cascade
now reveals EM’s proposed internal meter analysis
as well as token mappings, e.g.:
to be or not to be that is the question
| | | | | | | | | /\
S S* S S* S S* S S* S S* S
| | | | | | | | | |
S S* S S* S S* S S* S S*

Figure 5 shows accuracy results on the 70-line test
corpus mentioned at the beginning of this section.
Over 94% of word tokens are assigned a syllable-
stress pattern that matches the pattern transcribed
from audio. Over 81% of whole lines are also
scanned correctly. The upper limit for whole-line
scanning under our constraints is 88.6%, because
11.4% of gold outputs do not match any of the four
patterns we allow.
We further obtain a probabilistic table of word

mappings that we can use for generation and trans-

527

P(S* S S* | altitude) = 1.00

P(S* S | creatures) = 1.00

P(S* S | pointed) = 0.95
P(S S* | pointed) = 0.05

P(S* S | prisoner) = 0.74
P(S* S S* | prisoner) = 0.26

P(S* S | mother) = 0.95
P(S* | mother) = 0.03
P(S S* | mother) = 0.02

Figure 6: Sample learned mappings between words and
syllable-stress patterns.

word P(S* | word) P(S | word)
a 0.04 0.96
the 0.06 0.94
their 0.09 0.91
mens 0.10 0.90
thy 0.10 0.90
be 0.48 0.52
me 0.49 0.51
quick 0.50 0.50
split 0.50 0.50
just 0.51 0.49
food 0.90 0.10
near 0.90 0.10
raised 0.91 0.09
dog 0.93 0.07
thought 0.95 0.05

Figure 7: Sample mappings for one-syllable words.

lation tasks. Figure 6 shows a portion of this table.
Note that P(S S* | mother) has a very small proba-
bility of 0.02. We would incorrectly learn a much
higher value if we did not loosen the iambic pen-
tameter model, as many mother tokens occur line-
initial and line-final.
Figure 7 shows which one-syllable words are

more often stressed (or unstressed) in iambic pen-
tameter poetry. Function words and possessives tend
to be unstressed, while content words tend to be
stressed, though many words are used both ways.
This useful information is not available in typical
pronunciation dictionaries.
Alignment errors still occur, especially in noisy

P(m) � m� P(e|m) � e� P(e) � e

Figure 8: Finite-state cascade for poetry generation.

portions of the data that are not actually written in
iambic pentameter, but also in clean portions, e.g.:
the perfect ceremony of loves rite
| /\ /|\ | | /\
S S* S S* S S* S S* S S*

The word ceremony only occurs this once in the
data, so it is willing to accept any stress pattern.
While rite is correctly analyzed elsewhere as a one-
syllable word, loves prefers S*, and this overwhelms
the one-syllable preference for rite. We can blame
our tokenizer for this, as it conflates loves and love’s,
despite the fact that these words have different stress
probabilities.

4 Generation

Figure 8 shows our concept of generation as a cas-
cade of weighted FSTs.
P(m) is a user-supplied model of desired

meters—normally it deterministically generates a
single string of S* and S symbols. (The user also
supplies a rhyme scheme—see below).
P(e|m) is the reverse of Section 3’s P(m|e), be-

ing a model of word selection. Its generative story
is: (1) probabilistically select n tokens (n = 1 to 5)
from the input, (2) probabilistically select a word w
that realizes that n-token sequence, and (3) recurse
until the input is consumed. Instead of asking how
a given word is likely to be pronounced (e.g., S or
S*), we now ask how a given stress-pattern (e.g., S
or S*) is likely to be realized. This model is trained
with the same method described in Section 3 and is
augmented with the CMU pronunciation dictionary.
Finally, P(e) is a word-trigram model built from a

10,000-line corpus of 105 English love poems.
We select the first line of our poem from the FST

cascade’s 100,000-best list, or by hand. To gener-
ate each subsequent line, we modify the cascade and
run it again. The first modification is to incorporate
a discourse model. From our poetry corpus, we esti-
mate a word’s unigram probability given the words
on the previous line, via IBM Model 1 (Brown et
al., 1993). We modify P(e) by interpolating in these
probabilities. Second, we check if any previous line

528

The women of the night
Again and all the way
Like a mouse in the white
Not the heart of the day.

- - -
Of the bed to trust me
Around her twists the string
But i will not tell thee
Fire changes everything.

- - -
A son of the right hand confines
His uncle could have broken in
Towards the high bank and the pines
Upon the eyes and i have been

- - -
Into one of her hundred year old
Or the house in a house in a cold
The first time she met him
Like a mouse in the dim
For me to the moon and when i told

- - -
Into one of them some years before
His own man or the house in a more
The moon and when the day
Into one of the way
With the breath from the first time

she swore

Figure 9: Sample poems generated with a weighted FST
cascade.

w1, w2, ...wn needs to be rhymed with, according to
the user-supplied scheme. If so, we build an addi-
tional FST that accepts only strings whose final word
rhymes with wn. This is a reasonable approach,
though it will not, for example, rhyme ...tar me with
...army. We say two non-identical words rhyme if
their phoneme strings share a common suffix that in-
cludes the last stressed vowel.
Figure 9 shows several poems that we automati-

cally generate with this scheme.

5 Translation

Automatically generated poetry can sound good
when read aloud, but it often has a “nonsense” feel to
it. According to (Gervas, 2010), creative-language
researchers interested in realization and surface lan-
guage statistics (“how to say”) have tended to grav-
itate to poetry generation, while researchers inter-
ested in characters, goals, and story-line (“what to
say”) have tended to gravitate to prose story genera-
tion.
Translation provides one way to tie things to-

i� P(e|i) � e� P(m|e) � m� P(m) � m

Figure 10: Finite-state cascade for poetry translation.

gether. The source language provides the input
(“what to say”), and the target language can be
shaped to desired specifications (“how to say”). For
example, we may want to translate Italian sonnets
into fluent English iambic pentameter. This is cer-
tainly a difficult task for people, and one which is
generally assumed to be impossible for computers.
Here we investigate translating Dante’s Divine

Comedy (DC) from Italian into English by machine.
The poem begins:
nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura
che la via diritta era smarrita.

DC is a long sequence of such three-line stan-
zas (tercets). The meter in Italian is hendecasyl-
labic, which has ten syllables and ensures three
beats. Dante’s Italian rhyme scheme is: ABA, BCB,
CDC, etc, meaning that lines 2, 4, and 6 rhyme with
each other; lines 5, 7, and 9 rhyme with each other,
and so forth. There is also internal rhyme (e.g.,
diritta/smarrita).
Because DC has been translated many times

into English, we have examples of good outputs.
Some translations target iambic pentameter, but even
the most respected translations give up on rhyme,
since English is much harder to rhyme than Italian.
Longfellow’s translation begins:
midway upon the journey of our life
i found myself within a forest dark
for the straightforward pathway had

been lost.

We arrange the translation problem as a cascade
of WFSTs, as shown in Figure 10. We call our Ital-
ian input i. In lieu of the first WFST, we use the
statistical phrase-based machine translation (PBMT)
system Moses (Koehn et al., 2007), which generates
a target-language lattice with paths scored by P(e|i).
We send this lattice through the same P(m|e) device
we trained in Section 3. Finally, we filter the result-
ing syllable sequences with a strict, single-path, de-
terministic iambic pentameter acceptor, P(m).3 Our

3It is also possible to use a looser iambic P(m) model, as
described in Section 3.

529

Parallel Italian/English Data
Collection Word count (English)
DC-train 400,670
Il Fiore 25,995
Detto Damare 2,483
Egloghe 3,120
Misc. 557
Europarl 32,780,960

English Language Model Data
Collection Word count (English)
DC-train 400,670
poemhunter.com 686,714
poetry.eserver.org
poetrymountain.com
poetryarchive.org 58,739
everypoet.com 574,322
sonnets.org 166,465
Europarl 32,780,960

Tune and Blind Test Data (4 reference)
Collection Word count (Italian)
DC-tune 7,674
DC-test 2,861

Figure 11: Data for Italian/English statistical translation.

finite-state toolkit’s top-k paths represent the trans-
lations with the highest product of scores P(e|i) ·
P(m|e) · P(m).
In general, the P(e|i) and P(m|e) models fight

each other in ranking candidate outputs. In exper-
iments, we find that the P(e|i) preference is some-
times so strong that the P(m|e) model is pushed
into using a low-probability word-to-stress mapping.
This creates output lines that do not scan easily. We
solve this problem by assigning a higher weight to
the P(m|e) model.4
Figure 11 shows the data we used to train the

PBMT system. The vast majority of parallel Ital-
ian/English poetry is DC itself, for which we have
four English translations. We break DC up into DC-
train, DC-tune, and DC-test. We augment our target
language model with English poetry collected from
many sources. We also add Europarl data, which

4We set this weight manually to 3.0, i.e., we raise all prob-
abilities in the P(m|e) model to the power of 3.0. Setting the
weight too high results in lines that scan very well, but whose
translation quality is low.

Original:

nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura
che la via diritta era smarrita.
Phrase-based translation (PBMT):

midway in the journey of our life
i found myself within a forest dark
for the straight way was lost.
PBMT + meter model:

midway upon the journey of our life
i found myself within a forest dark
for the straightforward pathway had been lost.

Figure 12: Automatic translation of lines from Dante’s
Divine Comedy. In this test-on-train scenario, the ma-
chine reproduces lines from human translations it has
seen.

is out of domain, but which reduces the unknown
word-token rate in DC-test from 9% to 6%, and the
unknown word-type rate from 22% to 13%.
We first experiment in a test-on-train scenario,

where we translate parts of DC that are in our train-
ing set. This is a normal scenario in human poetry
translation, where people have access to previous
translations.
Figure 12 shows how we translate the first lines

of DC, first using only PBMT, then using the full
system. When we use the full system, we not only
get an output string, but also the system’s intended
scan, e.g.:
midway upon the journey of our life
/\ /\ | /\ | | |

S S* S S* S S* S S* S S*

The machine’s translation here is the same as
Longfellow’s, which is in the training data. In other
cases, we observe the machine combining existing
translations, e.g.:
i: bedi la bestia per cu io mi volsi
I5: behold the beast that made me turn aside

H1: BEHOLD THE BEAST for which i have turned back
H2: you see the beast THAT MADE ME TURN ASIDE
H3: see the beast that forced me to turn back
H4: look at the beast that drove me to turn back

I5 refs to the machine’s iambic pentameter transla-

530

tion, while H1-4 refer to human translations. The
machine also creates new translations:
i: diro‘ de laltre cose chi vho scorte
I5: i shall explain the other things i saw

H1: speak will i of the other things i saw there
H2: ill also tell THE OTHER THINGS I SAW
H3: i will recount the other things i saw
H4: i here will tell the other things i saw

We can further change the target meter to any-
thing we desire. To obtain iambic tetrameter (4-beat)
translations, we delete the last two transitions of the
P(m) model. We then get:
I4: in our life the journey way

i found myself deep on dark wood
that lost straightforward pathway had.

ah how to say the what is hard
this forest savage rough and stern
the very thought renews the fear.

Translations and scans are uneven, but we have
significant flexibility. We can even request transla-
tions that avoid the English letter A, by adding a fil-
ter to the end of the FST cascade, obtaining:
I5: in midst upon the journey of our life

i found myself within the wood obscure
<fail>

To steer clear of the adjective dark in the second
line, the system switches from forest to wood, so
obtain a proper scan. The third line fails because
all paths through the translation lattice contain an A
somewhere.
Translating blind-test data proves to be more dif-

ficult. We hold out Canto XXXI of DC’s Paradiso
section for testing. Figure 13 shows a portion of
the translation results. The MT system handles un-
known Italian words by passing them through to the
output. The P(m|e) meter model cannot process
those words, accounting for the I5 failure rate.
Here, we get a first look at statistical MT trans-

lating poetry into rhythmic structures—as with all
MT, there are successes and problems, and certainly
more to do.

6 Future Work

We plan to release all our of data in useful, processed
form. Below we list directions for future research.
In general, we see many interesting paths to pursue.
Analysis. Proper use of one-syllable words re-

mains tricky. Lines coming out of generation

Original:

in forma dunque di candida rosa
mi si mostrava la milizia santa
che nel suo sangue cristo fece sposa

ma laltra che volando vede e canta
la gloria di colui che la nnamora
e la bonta‘ che la fece cotanta
Human translation:

in fashion then as of a snow white rose
displayed itself to me the saintly host
whom christ in his own blood had made his bride

but the other host that flying sees and sings
the glory of him who doth enamour it
and the goodness that created it so noble
Phrase-based translation (PBMT):

in the form so rose candida
i now was shown the militia holy
that in his blood christ did bride

but the other that flying sees and sings
the glory of him that the nnamora
and the goodness that the made cotanta
PBMT + meter model:

<fail>
i now was shown the holy soldiery
that in his blood he married jesus christ

but flying sees and sings the other which
<fail>
<fail>

Figure 13: Automatic translation of blind-test data from
Dante’s Divine Comedy.

531

and translation do not always scan naturally when
read aloud by a person. We trace such errors to
the fact that our lexical probabilities are context-
independent. For example, we have:
P(S | off) = 0.39
P(S* | off) = 0.61

When we look at Viterbi alignments from the
analysis task, we see that when off is preceded by
the word far, the probabilities reverse dramatically:
P(S | off, after far) = 0.95
P(S* | off, after far) = 0.05

Similarly, the probability of stressing at is 40%
in general, but this increases to 91% when the next
word is the. Developing a model with context-
dependent probabilities may be useful not only for
improving generation and translation, but also for
improving poetry analysis itself, as measured by an-
laysis task accuracy.
Other potential improvements include the use of

prior knowledge, for example, taking word length
and spelling into account, and exploiting incomplete
pronunciation dictionary information.
Generation. Evaluation is a big open problem for

automatic poetry generation—even evaluating hu-
man poetry is difficult. Previous suggestions for au-
tomatic generation include acceptance for publica-
tion in some established venue, or passing the Tur-
ing test, i.e., confounding judges attempts to distin-
guish machine poetry from human poetry. The Tur-
ing test is currently difficult to pass with medium-
sized Western poetry.
Translation. The advantage of translation over

generation is that the source text provides a coherent
sequence of propositions and images, allowing the
machine to focus on “how to say” instead of “what
to say.” However, translation output lattices offer
limited material to work with, and as we dig deeper
into those lattices, we encounter increasingly disflu-
ent ways to string together renderings of the source
substrings.
An appealing future direction is to combine trans-

lation and generation. Rather than translating
the source text, a program may instead use the
source text for inspiration. Such a hybrid trans-
lation/generation program would not be bound to
translate every word, but rather it could more freely
combine lexical material from its translation tables

with other grammatical and lexical resources. In-
terestingly, human translators sometimes work this
way when they translate poetry—many excellent
works have been produced by people with very little
knowledge of the source language.
Paraphrasing. Recently, e�f translation tables

have been composed with f�e tables, to make
e�e tables that can paraphrase English into English
(Bannard and Callison-Burch, 2005). This makes it
possible to consider statistical translation of English
prose into English poetry.

Acknowledgments

This work was partially supported by NSF grant IIS-
0904684.

References
C. Bannard and C. Callison-Burch. 2005. Paraphrasing
with bilingual parallel corpora. In Proc. ACL.

P. Brown, V. Della Pietra, S. Della Pietra, and R. Mercer.
1993. The mathematics of statistical machine trans-
lation: Parameter estimation. Computational linguis-
tics, 19(2).

B. Diaz-Agudo, P. Gervas, and P. A. Gonzalez-Calero.
2002. Poetry generation in COLIBRI. In Proc. EC-
CBR.

P. Gervas. 2001. An expert system for the composition of
formal Spanish poetry. Journal of Knowledge-Based
Systems, 14:200–1.

P. Gervas. 2010. Engineering linguistic creativity: Bird
flight and jet planes. Invited talk, CALC-10.

J. Graehl. 1997. Carmel finite-state toolkit.
http://www.isi.edu/licensed-sw/carmel.

L. Jiang and M. Zhou. 2008. Generating Chinese cou-
plets using a statistical MT approach. In Proc. COL-
ING.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst. 2007. Moses: open source toolkit for
statistical machine translation. In Proc. ACL.

H. Manurung, G. Ritchie, and H. Thompson. 2000. To-
wards a computational model of poetry generation. In
Proc. AISB’00 Symposium on Creative and Cultural
Aspects and Applications of AI and Cognitive Science.

H. Manurung. 2003. An evolutionary algorithm ap-
proach to poetry generation. Ph.D. thesis, University
of Edinburgh.

Y. Netzer, D. Gabay, Y. Goldberg, andM. Elhadad. 2009.
Gaiku : Generating Haiku with word associations

532

norms. In Proc. NAACL Workshop on Computational
Approaches to Linguistic Creativity.

N. Tosa, H. Obara, and M. Minoh. 2008. Hitch Haiku:
An interactive supporting system for composingHaiku
poem. In Proc. International Conference on Enter-
tainment Computing.

M. T. Wong and A. H. W. Chun. 2008. Automatic Haiku
generation using VSM. In Proc. ACACOS.

533

Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers,
pages 905–916, Dublin, Ireland, August 23-29 2014.

Automatic Prediction of Text Aesthetics and Interestingness

Debasis Ganguly
CNGL,

School of Computing,

Dublin City University,

Dublin 9, Ireland

dganguly@computing.dcu.ie

Johannes Leveling
CNGL,

School of Computing,

Dublin City University,

Dublin 9, Ireland

jleveling@computing.dcu.ie

Gareth J.F. Jones
CNGL,

School of Computing,

Dublin City University,

Dublin 9, Ireland

gjones@computing.dcu.ie

Abstract

This paper investigates the problem of automated text aesthetics prediction. The avail-
ability of user generated content and ratings, e.g. Flickr, has induced research in aesthet-
ics prediction for non-text domains, particularly for photographic images. This problem,
however, has yet not been explored for the text domain. Due to the very subjective
nature of text aesthetics, it is di�cult to compile human annotated data by methods
such as crowd sourcing with a fair degree of inter-annotator agreement. The availability
of the Kindle “popular highlights” data has motivated us to compile a dataset com-
prised of human annotated aesthetically pleasing and interesting text passages. We then
undertake a supervised classification approach to predict text aesthetics by constructing
real-valued feature vectors from each text passage. In particular, the features that we use
for this classification task are word length, repetitions, polarity, part-of-speech, semantic
distances; and topic generality and diversity. A traditional binary classification approach
is not e↵ective in this case because non-highlighted passages surrounding the highlighted
ones do not necessarily represent the other extreme of unpleasant quality text. Due to the
absence of real negative class samples, we employ the MC algorithm, in which training
can be initiated with instances only from the positive class. On each successive iteration
the algorithm selects new strong negative samples from the unlabeled class and retrains
itself. The results show that the mapping convergence (MC) algorithm with a Gaussian
and a linear kernel used for the mapping and convergence phases, respectively, yields the
best results, achieving satisfactory accuracy, precision and recall values of about 74%,
42% and 54% respectively.

1 Introduction

Since their inception, Amazon Kindle device1 and Apps for other general purpose hand-held
devices, have led to a massive increase in the trend of reading e-books over paper printed ones.
The Amazon Kindle and the Kindle Apps provide a very simple mechanism for highlighting a
piece of text and sharing it on social media. The most popular highlighted pieces of text are
shown in the Kindle device with an intention to help readers focus on passages that are pleasing or
interesting to the greatest number of people. Every month, Kindle customers highlight millions
of book passages that are meaningful to them2. The general trend among Kindle readers, while
reading the classic English literary works, is to highlight text passages that are associated with
a high aesthetic quality. An example highlighted passage is shown in Figure 1.

With the availability of such highlighted text, which may be considered as text passages which
most readers find pleasing to read, an interesting research problem is to attempt automatic
prediction of highlighted pieces of text. In other words, given a text passage, the objective is to

This work is licensed under Creative Commons Attribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

1
https://kindle.amazon.com/

2
https://kindle.amazon.com/most_popular

905

It was the best of times, it was the worst of times, it was the age of wisdom, it was
the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was
the season of Light, it was the season of Darkness, it was the spring of hope, it was the
winter of despair.

Figure 1: Passage from A tale of two cities (Charles Dickens), highlighted by 6843 Kindle
readers.

determine the likelihood of it being aesthetically pleasing and interesting. Such an automated
approach of identifying aesthetically pleasing text passages may potentially be used to endorse
a newly released book on e-commerce websites with an aim to increase its sales. Moreover, such
an approach may also, in principle, be used as a tool by an author to determine how likely it is
for readers to appreciate a newly written text passage.

The key challenge in solving this problem is to determine the characteristic attributes of a
popular highlighted text passage. An intuitive assumption is that the popularity of a high-
lighted passage depends on its aesthetic quality. Generally speaking, passages inclined towards
expressing an author’s view on a subject, which may often be philosophical in nature, with
considerable application of atypical figures of speech, e.g. anaphora, alliteration, antithesis,
metaphor, simile, personification etc., are more likely to be highlighted than a straight-forward
story narrative passage. For example, the highlighted passage in Figure 1 is rich in anaphora
(repetition of the same word or group of words in a paragraph, e.g. “times”, “age”, “epoch”
etc.) and antithesis (juxtaposition of opposing or contrasting ideas, e.g. “best of times”, “worst
of times”; “wisdom”, “foolishness” etc). An automated approach of aesthetic quality prediction
thus has to take into account these di↵erent features of a text passage. The idea of using these
features for text aesthetics prediction, in fact, forms a core part of our work.

It is particularly interesting to see that this problem of automatically predicting text aes-
thetics is largely di↵erent from the standard well researched problem of document text classi-
fication (Sebastiani, 2002). The reason is as follows. The problem of text categorization can
e↵ectively be solved by the application of discrete categorical features, such as character n-gram
frequencies and word frequencies. In other words, the presence of characteristic words from a
particular domain is a good indicator of the class of a document, e.g. the presence of the words
“soccer”, “goal” etc. in a document is a good indicator that the document is of the sports
genre, whereas the presence of words such as “money”, “bank” etc. would indicate that the
genre is finance. Consequently, the generative framework of a multinomial Naive Bayes (NB)
model with character n-gram and word n-grams based features works e↵ectively for this class of
problems (McCallum and Nigam, 1998).

In the case of aesthetic quality prediction, however, the mere presence of a particular word or
character n-gram can hardly be a good indicator of the inherent literary quality of the text. The
output classes of this classification problem, namely aesthetic or not aesthetic, do not comprise
a small vocabulary of domain-specific representative terms such as in the case of the sports or
finance domains. The vocabularies of the respective classes in this classification problem are
largely unrestricted and mutually indistinguishable.

The rest of the paper is organized as follows. Section 2 presents related research. In Section 3,
we present our proposed approach to solve the text aesthetics problem. Section 4 describes our
experimental settings, following which Section 5 presents the results. In Section 6, we investigate
the contribution from individual features and then the relative importance of the features when
used in combination. Finally, Section 7 concludes the paper.

2 Related Work

A computational viewpoint of aesthetic quality, in general, takes into account the subjectivity of
an observer and postulates that among several observations, the aesthetically most pleasing one

906

is the one with the shortest description, given the observer’s previous knowledge (Schmidhuber,
2010). An agent driven reinforcement based learning algorithm can then be used in principle to
produce creative (novel and interesting) outputs (Schmidhuber, 2010). Our work in this paper
is largely di↵erent from the general reinforcement learning paradigm, because we focus on the
particular problem of text aesthetics viewing the problem as a supervised classification task.
Moreover, the proposition of minimum description length as an attribute of aesthetic quality
(Schmidhuber, 2010) is counter-intuitive for literary works.

There has been considerable research interest in automatically predicting visual aesthetic
quality of images (Dhar et al., 2011) and layout of web pages (Reinecke et al., 2013). Most
empirically successful approaches to image aesthetics prediction first transform an image into a
feature vector of characteristic attributes that play a pivotal role in di↵erentiating an interesting
image from a non-interesting one. Generally speaking, some of these attributes which determine
whether an image is aesthetically pleasing are the presence of salient objects (indicated by a low
depth of field), compositional attributes (e.g. the rule of thirds), the e↵ect of light in natural
landscapes, etc. The next step is to apply a supervised learning algorithm, e.g. support vector
machine (SVM), to learn a two-class prediction model. Useful features, extracted from images
for this classification task include: i) colourfulness, contrast, symmetry, vanishing point and
facial features (Jiang et al., 2010); ii) face poses, between-face distances, and the consistency
of expressions on multiple faces (Li et al., 2010); iii) high level describable attributes, such as
compositional attributes (e.g. rule of thirds image layout), content attributes related to the
presence of people, animals, sky illumination attributes etc. (Dhar et al., 2011).

Our proposed method of text aesthetics prediction is similarly based on extracting character-
istic features from the text passages. However, in the case of literature, it is worth mentioning
that in contrast to image aesthetics it is more di�cult to describe the subtle attributes which
di↵erentiate an aesthetically pleasing text from its counterpart.

Although the authors are not aware of any reported research on text aesthetics, there has
been a considerable amount of research in the somewhat closely related problem of detect-
ing metaphors in text. Automated approaches to metaphor detection involve both supervised
and unsupervised approaches, some of which include: i) supervised classification on extracted
verbal target feature vectors of sentences (Gedigian et al., 2006); ii) expectation maximization
(EM) based unsupervised approach to non-literal word sense detection (Birke and Sarkar, 2006);
iii) unsupervised approach using hierarchical graph factorization clustering (Shutova and Sun,
2013).

In general, it is intuitive to assume that metaphorical or figurative parts of text are aestheti-
cally pleasing and interesting, which makes the problem of text aesthetics prediction somewhat
similar to that of metaphor detection. Unfortunately, this assumption is not often true, and
this is particularly the case for literary works due to the availability of a large number of figures
of speech at an author’s disposal (metaphor just being one of them). For example, the sample
Kindle highlighted passage shown in Section 1 has an obvious aesthetic appeal to a large number
of readers, in spite of it being not metaphorical.

3 Our Approach to the Text Aesthetics Prediction Problem

In this section, we describe the details of our approach to text aesthetics prediction. We hy-
pothesize that a NB classifier with word or character n-gram based features is not suitable for
this particular problem due to the mutual overlap and lack of domain specific restriction in the
vocabulary of the output classes (i.e. aesthetic and non-aesthetic). One thus needs to extract a
set of characteristic features from the text passages which may be useful to solve the classifica-
tion problem. We describe the features used in our approach in Section 3.1. In Section 3.2, we
propose to use the mapping convergence (MC) algorithm for the text aesthetics problem, where
the intention is to learn a classifier only from positive samples.

907

The truth is rarely pure and never simple. Modern life would be very tedious if it were
either, and modern literature a complete impossibility!

Figure 2: Passage from The Importance of Being Earnest (Oscar Wilde).

3.1 Feature Vector Encoding of Text Passages

In this section, we introduce the various features used for the text aesthetics classification task.
Each feature is a function which maps a passage of text P = {w1 . . . wN} comprising N words
into a real number.

3.1.1 Word-based Features

In Section 1, we illustrated that that an anaphora is a rheoteric device used by authors to
emphasize a text passage, which in turn indicates that such a passage is likely to attract the
attention of readers and hence are likely to be highlighted by them. Moreover, the closer the
repetitions are, the stronger is the emphasis.

On the basis of this reasoning, we employ an average positional di↵erence weighted count of
word repetitions in a passage. To be more precise, for each word in a passage we compute the
number of times a word wi is repeated, divide this count by the di↵erence between the repeating
position (say at position j), and average the sum of counts for all repeating words over the
passage length, as shown in Equation 1. In Equation 1, (wi = wj) is the indicator function
which is 1 if and only if wi = wj and 0 otherwise.

The second word level feature which we use, is the average length of words in a passage.
The reasoning behind using this feature is that authors tend to use relatively longer words (e.g.
superlatives) to emphasize a passage. Equation 2 shows how this is computed.

W1(P) =
2

N(N � 1)

NX

i=1

NX

j=i+1

(wi = wj)
j � i

(1)

W2(P) =
1
N

NX

i=1

len(wi) (2)

3.1.2 Topic-based Features

An attribute which can be considered responsible for the aesthetic quality of a text passage is
the diversity of topics it expresses. It is reasonable to assume that a text passage expressing a
broad idea or opinion of an author, often philosophical in nature, is likely to be appealing to
readers. Such general themed text passages typically cover a broad range of topics, as a result
of which the constituent words of such text passages involve collocation of seemingly unrelated
terms. For example, in the text passage shown in Figure 2, the word pairs (truth, tedious), and
(literature, impossibility) would typically appear in di↵erent topic classes, where by a topic we
mean a set of words with high co-ocurrence likelihood estimated from a collection of documents
by standard topic modelling techniques such as the Latent Dirichlet allocation (LDA) (Blei et
al., 2003). To encode this diversity of topics as a real valued feature function, we use Equation 3.

T1(P) =
2

N(N � 1)

NX

i=1

NX

j=i+1

[z(wi) 6= z(wj)]
(j � i)

(3)

In Equation 3, z(w) denotes the topic class of the word w obtained with the help of LDA. A
mismatch in the topic class is divided by the distance between the mismatches to assign more
weight to the close mismatches. As an example, the mismatch between (literature, impossibility)
bears more importance than the mismatch between (modern, impossibility).

The second topic-based feature which we use pertains to predicting the abstractness of the
content of a passage. It has been reported that words highly representative of topics are generally

908

not metaphorical. We apply a similar reasoning to hypothesize that since an interesting piece of
text is more likely to be philosophical or abstract in nature in comparison to a story narrative,
the constituent words are less likely to be the representatives of their topic classes. Formally
speaking in terms of LDA, these words are expected to have smaller values of maxk �k(w). Recall
that a topic representative word in LDA exhibits a skewed distribution with a peak for one topic
class (with a high value of maxk �k(w)), whereas a less representative word exhibits a more
uniform distribution of �k(w) values over the topic classes (thus a low value of maxk �k(w)). We
use Equation 4 to compute the average topic concreteness of a text passage.

T2(P) =
1
N

NX

i=1

max
k

�k(wi) (4)

3.1.3 Part of Speech Feature

We hypothesize that another attribute of an aesthetic passage is that it is likely to contain a
rich usage of adjectives (mostly of superlative type for the sake of emphasis) and adverbs. We
therefore employ the part of speech tag (POS) information of the constituent words of a text
passage as one of our features. To be more specific, we use the average number of adjectives
and adverbs of a text passage as the feature value. This is shown in Equation 5.

POS(P) =
1
N

NX

i=1

(#adjectives + #adverbs) (5)

3.1.4 Sentiment Feature

We pointed out in Section 1 that authors often use the antithesis figure of speech to express con-
trasting concepts. Thus, another feature which we can use is the aggregated absolute di↵erence
values between the sentiment polarities of words in a text paragraph. This again is weighted
by the di↵erence in position between a positive sentiment word and its negative counterpart to
assign more importance to closely occurring opposite sentiment concepts.

To obtain the sentiment values of the constituent words, we used the SentiWordNet3. To
illustrate with an example, consider the closely occurring opposite sentiment word pairs (best
(0.75), worst (-0.75)), (wisdom (0.375), foolishness (-0.375)) etc. of Figure 1 and the word pairs
(complete (0.625), impossibility (-0.25)) of Figure 2, where the numbers in the parentheses show
the positive or the negative sentiment value (a normalized number between 0 and 1). Equation 6
shows the real-valued function derived from the sentiment information of word pairs, where the
function s(w) denotes the sentiment value associated with the word w.

SENT (P) =
2

N(N � 1)

NX

i=1

NX

j=i+1

|s(wi)� s(wj)|
(j � i)

(6)

3.1.5 Inter-word Semantic Distance Feature

An alternative way to represent the topic diversity is to capture the likelihood of the event
of occurrence of two words in close vicinity. The higher this likelihood is, the better is the
semantic relation or coherence between the words. We make use of the DISCO4 tool to compute
the semantic relation between two words in a word pair. In DISCO, these semantic relations
between the words are precomputed on the basis of co-occurrence likelihoods from a large corpus,
e.g. the Wikipedia (Kolb, 2008). DISCO provides two similarity measurements (named the first
order and the second order similarities) between two input words. While the first order similarity
between two input words is computed based on their collocation sets, the second order similarity
is computed based on their sets of distributionally similar words (Kolb, 2008). We denote the

3
http://sentiwordnet.isti.cnr.it/

4
http://www.linguatools.de/disco/disco_en.html

909

first order and the second order similarities between words wi and wj respectively as ds1(wi, wj)
and ds2(wi, wj) respectively.

In relation to text aesthetics, we expect a small value of average first order and second order
similarity values between word pairs in a highlighted piece of text in comparison to a non-
highlighted one. Similar to our earlier features, we divide these similarity values by the positional
di↵erence between the words in order to put more emphasis on semantic diversity between closely
occurring words. Equation 7 shows the two features extracted making use of these similarity
values.

SDk(P) =
2

N(N � 1)

NX

i=1

NX

j=i+1

|dsk(wi)� dsk(wj)|
(j � i)

, k = {1, 2} (7)

3.2 Learning from Positive Examples: The MC Algorithm

Binary classifiers, such as SVMs, work particularly well with a su�cient number of both positive
and negative class instances for training. In the case of text aesthetics prediction problem, the
passages highlighted by Kindle readers serve as the positive class samples. Although it might
be intuitive to use the non-highlighted passages as instances of the negative type, there can be
problems associated with this approach.

Firstly, the non-highlighted passages are not essentially instances of the negative class because
the non-highlighted passages are not necessarily aesthetically unpleasing. Secondly, there is an
element of cognitive bias associated with the highlighting process because a reader, who can
already see popular highlights while reading a page, may be biased to highlight the same passage
himself, and may not in fact highlight some other passage which he himself found interesting.

Note that this observation in fact makes our problem more challenging to solve in comparison
to aesthetics prediction in other domains, such as images, where information such as Flickr5

photo ratings can be used as strong positive or negative indicators of an image interestingness
or aesthetic quality, leading to e↵ective classification results using a standard binary classification
approach (Dhar et al., 2011).

Due to the presence of incompletely labeled examples, we apply the mapping convergence
(MC) algorithm (Yu et al., 2003) for this task. The objective of the MC algorithm is to predict
the positive samples from a test data, given a mixture of positive and unlabeled samples. These
unlabeled samples in the MC algorithm can be treated as instances of either the positive or the
negative class in order to obtain maximum classification e↵ectiveness.

The two stages of the MC algorithm are summarized as follows.

1. The mapping stage identifies from the unlabeled samples the strong negative ones, i.e. the
points distinctly di↵erent from the positive samples.

2. The convergence stage is an iterative step to learn a binary classification model, e.g. SVM,
using the positive and the strong negative samples. Each iterative step of convergence
classifies the remaining unlabeled samples to collect more strong negative samples. The
convergence step is repeated until no more strong negative samples are found.

The objective of the convergence step of the MC algorithm is to maximize margin to make
progressively better approximation of the negative data. At the end of the iteration, the class
boundary eventually converges to the boundary around the positive data set in the feature
space (Yu et al., 2003).

In our approach to the text aesthetics prediction task, we implement the mapping stage of
the MC algorithm with the help of standard one-class classifiers, namely the one class SVM
(OSVM) (Schölkopf et al., 1999) and the support vector data descriptor (SVDD) (Tax and
Duin, 2004). The OSVM separates all the data points in the feature space from the origin, with
the help of a separating hyperplane with maximum distance from the origin. The OSVM is thus

5
https://www.flickr.com/

910

able to separate out regions in the input space with high probability densities (Schölkopf et al.,
1999). SVDD, on the other hand, instead of a planar, takes a spherical approach to the one
class problem. The algorithm obtains a spherical boundary in feature space around the data.
The volume of this hypersphere is minimized to minimize the e↵ect of incorporating outliers in
the solution (Tax and Duin, 2004).

It is worth mentioning here that although the OSVM and the SVDD can be trained with
positive samples only, these models are prone to over-fitting or under-fitting due to a small
number of support vectors modeled from a small number of positive samples (Yu et al., 2003).
In contrast, a binary SVM can model data more robustly due to the presence of the additional
negative samples. Hence, OSVM and the SVDD are typically used as a weak classifier to obtain
a set of initial strong negative samples in order to initiate the convergence step of the MC
algorithm.

4 Experiment Settings

In this section, we describe the dataset and the tools used for our experiments.

4.1 Dataset Construction

The standard practice to evaluate the metaphor detection problem, which is somewhat similar
to the text aesthetics prediction, is to make extensive use of manually annotated data typically
obtained under controlled user-based studies, where the users or the participants are instructed
to perform some given objectives, such as manually label metaphors in a collection of documents,
e.g. (Hovy et al., 2013). The main di�culties with this approach are that: i) it takes a
considerable amount of time to collect data; ii) the quality of the data depends largely on
controlled experimental settings, e.g. the data quality may be susceptible to errors caused by
targeted, malicious work e↵orts, since there is often a financial incentive to complete tasks
quickly rather than e↵ectively (Ipeirotis et al., 2010); and iii) it is very di�cult to compare the
e↵ectiveness of two methods on two di↵erent datasets obtained under di↵erent controlled user
study settings.

The availability of fairly large amounts of highlighted text on the Amazon website has ensured
a reliable and fast way to construct the dataset for carrying out the text aesthetics experiments.
The advantages are as follows. Firstly, it is not necessary to conduct crowd sourcing experiments
for data collection. Secondly, since the data is not generated by controlled crowd sourcing, the
quality of the data is more reliable because there is no financial incentive to complete tasks
quickly. Thirdly, since the data is publicly available, it is possible to achieve a fair comparison
between di↵erent problem solving approaches.

The Amazon “Popular Highlights”6 web page presents a ranked list of the most highlighted
passages, sorted in descending order by the number of highlights. However, at the time of writing
this paper, Amazon has neither made the data publicly downloadable nor provided an API to
access it. For conducting our experiments with this data, we therefore had to automatically
crawl data from the Popular Highlights web page.

In addition to the highlighted passages (serving as the positive class samples in our dataset),
we also need the non-highlighted ones (meant to serve as the unlabeled samples). The text from
the non-highlighted passages, however, are not available in the Popular Highlights web page.
This data was thus extracted from those books, the passages of which are popularly highlighted.
In order to ensure free access to book content, we had to restrict our dataset to the 50 most
popular highlighted classic English fictions.

More precisely speaking, for every highlighted passage found while crawling the Amazon
Popular Highlights page, our crawler checks if the book is available on project Gutenberg7. If
not, then we examine the next highlighted passage, otherwise we craw the full text of the book,

6
https://kindle.amazon.com/most_popular/highlights_all_time/

7
http://www.gutenberg.org/

911

in which the current highlighted passages belongs, from project Gutenberg website. The crawler
continued to run until we had collected highlighted passages from 50 di↵erent literature classics.

The dataset for the prediction task is then constructed as follows. First, we add the text of
all highlighted passages as instances of the positive class. Next, for each highlighted passage,
we add the paragraph preceding and succeeding it into the dataset as the unlabeled samples.
Note that selecting the unlabeled samples this way is better than random selection of non-
highlighted passages from full text, because this way of choosing negative samples ensures a
meaningful representation of reader judgments to highlight a particular passage of text from
within a surrounding context.

We then partition the dataset comprised of the positive and unlabeled samples into equal
sized training and test sets. In Table 1, we outline the characteristics of the dataset.

Dataset # Books Vocab. # Passages

Size Highlighted Unhighlighted Total

Train 25 9560 168 305 473
Test 25 7883 169 319 488

Total 50 13496 337 624 961

Table 1: Dataset characteristics

4.2 Implementation Details

For each passage in the dataset, we extract the features described in Section 3.1. To compute
the topic modeling based features we used Mallet8. The number of topics (K) in LDA was set
to 100. The POS tag feature was extracted with the help of the Stanford POS tagger9. For
extracting the sentiment feature, we made use of the Java API of the SentiWordNet10. For the
semantic word distance feature, we used the DISCO Java API11.

For the naive Bayes experiment, we used the Stanford classifier12. The SVM experiments
(binary SVM, one-class SVM, SVDD) were conducted with the libSVM software13.

4.3 Evaluation Metrics

For all the experiments reported in this paper, the classification e↵ectiveness mainly focuses on
precision and recall with respect to the positive class. Consequently, precision, recall and the
F-score measures, shown in Tables 2 and 3, are measured with respect to the positive class only.

Ideally, for this problem one would want to obtain a high recall, i.e. identify as many high-
lighted passages correctly as possible. In this situation, recall is thus more important than
precision. Achieving a good precision is desirable, nonetheless, to minimize the false positives.
Although we report accuracy, we emphasize that accuracy alone is not a good measure of clas-
sification e↵ectiveness in this case, because correct identification of negative instances is not
important for this problem.

5 Results

Before conducting experiments with the MC algorithm, we obtained baseline results by classify-
ing the dataset using NB and SVMs. In the case of NB, instead of using the real valued features
from the text passages (as proposed in Section 3.1), we simply used the character n-gram and
word n-gram features (maximum value of n was set to 5) from the text, automatically extracted

8
http://mallet.cs.umass.edu/

9
http://nlp.stanford.edu/software/tagger.shtml

10
http://sentiwordnet.isti.cnr.it/code/SentiWordNetDemoCode.java

11
http://www.linguatools.de/disco/disco_en.html

12
http://nlp.stanford.edu/software/classifier.shtml

13
http://www.csie.ntu.edu.tw/

~

cjlin/libsvmtools/

912

Classifier Kernel Accuracy Precision Recall F-score

NB N/A 67.40 54.40 36.70 43.80

BSVM Linear 66.19 35.71 5.92 10.15
BSVM Gaussian 67.00 39.39 15.38 22.13

OSVM Linear 38.32 32.46 51.48 39.82
OSVM Gaussian 53.68 41.87 50.29 45.70

SVDD Linear 35.04 34.77 100.00 51.60
SVDD Gaussian 37.91 35.56 97.63 52.13

Table 2: Text aesthetics prediction results with Naive Bayes and SVM.

Classifier Kernel Accuracy Precision Recall F-score

Mapping Convergence Mapping Convergence

OSVM BSVM Linear Linear 66.18 35.71 5.92 10.15
OSVM BSVM Linear Gaussian 64.96 40.26 36.69 38.39
OSVM BSVM Gaussian Linear 66.80 44.44 11.83 18.69
OSVM BSVM Gaussian Gaussian 64.34 36.87 39.05 37.93

SVDD BSVM Linear Linear 40.98 35.76 92.90 51.64
SVDD BSVM Linear Gaussian 43.44 36.17 90.53 51.69
SVDD BSVM Gaussian Linear 56.76 42.90 74.64 54.42
SVDD BSVM Gaussian Gaussian 47.34 38.60 88.17 53.69

Table 3: Text aesthetics prediction results by the MC algorithm with di↵erent settings.

by the Stanford classifier. The result of this experiment (see Table 2) shows that the recall value
is very low, which in turn indicates that word vocabulary based features, typically used for text
categorization, are not e↵ective for this task.

The next classification method that we employ is standard binary class SVM (denoted as
BSVM). The training phase of the BSVM used the non-highlighted passages as negative class
instances. We experimented with both linear and Gaussian kernels. For all reported results
which use the Gaussian kernel, the parameter � was set to the default value of 1/(#features)
as per the libSVM implementation. Although the accuracy achieved is comparable to NB, the
recall achieved is worse, which shows that treating non-highlighted passages as negative class
instances is not reasonable for this problem (see Section 6.2 for an illustration).

The recall value is significantly increased with the help of one-class SVM (OSVM). SVDD
performs even better in terms of recall. However, SVDD significantly underfits the data because
it classifies almost every test data point as an instance of the positive class, thus achieving low
accuracy and precision due to the presence of too many false positives.

Our next set of experiments involves the MC algorithm for classification. Since, the mapping
phase makes use of only the positive data, we employed both the one-class classifiers used in the
experiments of Table 2, i.e. OSVM and SVDD, for this purpose. Mapping with OSVM results
in an improvement in the accuracy at the cost of sacrificing recall, which is not desirable for
this problem. However, note that the negative samples obtained with the OSVM mapping (with
Gaussian kernel) improves the classification e↵ectiveness of the BSVM (compare the fourth row
of Table 3 with the second row of Table 2), which indicates that the MC algorithm does improve
the classification e↵ectiveness, confirming our hypothesis that it is reasonable not to consider
every non-highlighted passage as negative samples.

The problem of SVDD underfitting (as evident from the SVDD results of Table 2) is alleviated
by the MC approach. The most e↵ective MC approach uses Gaussian/linear kernels for map-
ping/convergence (see the seventh row of Table 3). Accuracy is increased to around 56% with
a satisfactory recall of around 74%. The use of Gaussian kernel during both the mapping and
convergence steps yields a higher recall but at the cost of more false positives (lower accuracy,
precision and F-score).

913

Feature combination vector Evaluation Metrics

Word Topics POS/Polarity Semantic Accuracy Precision Recall F-score

1 0 0 0 36.06 34.88 97.63 51.40
0 1 0 0 37.91 35.74 99.40 52.58
0 0 1 0 36.05 35.01 98.81 51.70
0 0 0 1 42.41 37.03 94.67 53.24

1 1 1 1 56.76 42.90 74.64 54.42

Table 4: Individual feature contributions for identifying text aesthetics.

Feature igain

Topic diversity (T1) 0.3684
Sentiment (SENT) 0.2685
Word repetition (W1) 0.2509
First-order semantic distance (SD1) 0.1543
Part-of-speech (POS) 0.1448
Second-order semantic distance (SD2) 0.1141
Word length (W2) 0.0732
Topic abstractness (T2) 0.0526

Table 5: Ranking features by their igain values.

6 Posthoc Analysis

In this section, we comment on the importance of the features used for classification, and also
illustrate how the MC algorithm helps in increasing the separability between the classes.

6.1 Feature Importance

First, we investigate the importance of the di↵erent features by a selective choice of only one
group of features at at time for the classification. The classifier we use for this experiment is
MC with a Gaussian SVDD kernel for mapping and a linear SVM kernel for convergence (as per
the best settings of Table 3). The results are shown in Table 4 from which it can be seen that
the best accuracy is obtained with the use of the semantic distance features.

It can be observed that the accuracy values obtained with a single category of features, such
as word-based (length and repetition), topic-based (generality and diversity) and so on, are
considerably lower than the accuracy value obtained with a combination of all the features (the
last row of Table 4. The precision values achieved with these individual feature groups are also
considerably lower than the precision of 42.90% of the overall combination.

Next, we find out the relative importance of each feature in their overall combination by
ranking the features with the help of a standard feature quality estimator, called information
gain (igain) (Quinlan, 1986). The results are presented in Table 5. It can be seen that the topic
diversity is the most discriminative feature having an igain value significantly higher than the
second most important one in the list. This observation verifies our hypothesis that aesthetically
appealing passages are those constituting terms from diverse topics.

The sentiment and the word repetition features, having close igain values, are second and
third respectively in the list. The usefulness of the sentiment feature suggests that contrasting
concepts packed in close vicinity of a sentence are likely to be aesthetically pleasing to read.
The word repetition feature, on the other hand, suggests that the anaphora figure of speech is
likely to be be associated with aesthetically pleasing text.

6.2 Illustration of the usefulness of the MC Algorithm

This section investigates the usefulness of the MC algorithm for the text aesthetics classification.
In particular, we show that for this one class classification problem, the MC algorithm can
selectively refine the set of unlabeled samples and retrain the model for better separability

914

1-1 0

0.94

-1

-0.031

(a) Before MC.
1-1 0

0.94

-1

-0.031

(b) After MC convergence (5 iterations).

Figure 3: Visualization of the training set in the two most discriminating dimensions, i.e. topic
diversity (Y-axis) and sentiment (X-axis).

between the positive and the unlabeled classes.
To illustrate our claim, we first plot the initial training set in two dimensional subspace

before the application of MC, i.e. when all the unlabelled instances are treated as negative class
samples; this is shown in Figure 3a. The two dimensions that we use for plotting this figure,
are the two features having the highest igain values, i.e. the topic diversity (T1) and sentiment
(SENT) features. Figure 3a shows that the highlighted text passages (shown in blue) are not
well separated from the non-highlighted ones (shown in red).

Next, in Figure 3b, we plot the training set with a reduced number of samples from the negative
(non-aesthetic) class obtained after running the MC algorithm. Figure 3b clearly shows that
after convergence the MC algorithm has retained only the strong negative samples for training,
as is evident from a better visual separation between the classes. A binary classifier, trained on
the dataset of Figure 3b, is thus likely to be more e↵ective than that trained with Figure 3a.

7 Conclusions

This paper investigated the problem of automated text aesthetics prediction. As distinguishing
features for text aesthetics identification, we applied di↵erent statistical features such as word
repetitions, topic diversity, part-of-speech, word polarity etc. We collected aesthetically pleasing
text passages from the Kindle “popular highlights” website for conducting our experiments. Due
to the presence of only positive class samples, i.e. the highlighted passages, in this dataset, we
apply the MC algorithm to iteratively train a binary classifier with the strongly negative samples.

The results of our experiments show that the MC algorithm with a Gaussian and a linear ker-
nel applied for the mapping and convergence phases respectively, yields the best results achieving
satisfactory recall, precision and F-score values of about 74%, 42% and 54% respectively. More-
over, the results also demonstrate that the topic diversity, word polarity and word repetition are
the three most distinguishing features for text aesthetics identification. Furthermore, our results
are comparable to those of a somewhat similar problem of figurative text detection where the
best reported F-score values achieved are about 54% (Birke and Sarkar, 2006) and 64% (Shutova
and Sun, 2013).

Acknowledgments

This research is supported by Science Foundation Ireland (SFI) as a part of the CNGL Centre
for Global Intelligent Content at DCU (Grant No: 12/CE/I2267).

915

References

Julia Birke and Anoop Sarkar. 2006. A clustering approach for nearly unsupervised recognition of
nonliteral language. In EACL 2006, 11st Conference of the European Chapter of the Association
for Computational Linguistics, Proceedings of the Conference, April 3-7, 2006, Trento, Italy. The
Association for Computer Linguistics.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet Allocation. Journal of
Machine Learning Research, 3:993–1022, March.

Sagnik Dhar, Vicente Ordonez, and Tamara L. Berg. 2011. High level describable attributes for predict-
ing aesthetics and interestingness. In The 24th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2011, Colorado Springs, CO, USA, 20-25 June 2011, pages 1657–1664.

Matt Gedigian, John Bryant, Srini Narayanan, and Branimir Ciric. 2006. Catching metaphors. In
Proceedings of the Third Workshop on Scalable Natural Language Understanding, ScaNaLU ’06, pages
41–48, Stroudsburg, PA, USA. Association for Computational Linguistics.

Dirk Hovy, Shashank Shrivastava, Sujay Jauhar, Mrinmaya Sachan, Kartik Goyal, Huying Li, Whit-
ney Sanders, and Eduard Hovy. 2013. Identifying metaphorical expressions with tree kernels. In
Proceedings of NAACL-HLT Meta4NLP Workshop.

Panagiotis G. Ipeirotis, Foster Provost, and Jing Wang. 2010. Quality management on amazon mechani-
cal turk. In Proceedings of the ACM SIGKDD Workshop on Human Computation, HCOMP ’10, pages
64–67, New York, NY, USA. ACM.

Wei Jiang, Alexander C. Loui, and Cathleen Daniels Cerosaletti. 2010. Automatic aesthetic value
assessment in photographic images. In Proceedings of the 2010 IEEE International Conference on
Multimedia and Expo, ICME 2010, 19-23 July 2010, Singapore, pages 920–925.

Peter Kolb. 2008. DISCO: A Multilingual Database of Distributionally Similar Words. In KONVENS
2008 – Ergänzungsband: Textressourcen und lexikalisches Wissen, pages 37–44.

Congcong Li, Alexander C. Loui, and Tsuhan Chen. 2010. Towards aesthetics: A photo quality assess-
ment and photo selection system. In Proceedings of the International Conference on Multimedia, MM
’10, pages 827–830, New York, NY, USA. ACM.

Andrew McCallum and Kamal Nigam. 1998. A comparison of event models for naive bayes text classifi-
cation. In AAAI/ICML Workshop on Learning for Text Categorization, pages 41–48.

J. R. Quinlan. 1986. Induction of decision trees. Mach. Learn., 1(1):81–106, March.

Katharina Reinecke, Tom Yeh, Luke Miratrix, Rahmatri Mardiko, Yuechen Zhao, Jenny Liu, and
Krzysztof Z. Gajos. 2013. Predicting users’ first impressions of website aesthetics with a quantifi-
cation of perceived visual complexity and colorfulness. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’13, pages 2049–2058, New York, NY, USA. ACM.

Jürgen Schmidhuber. 2010. Formal theory of creativity, fun, and intrinsic motivation (1990-2010). IEEE
T. Autonomous Mental Development, 2(3):230–247.

Bernhard Schölkopf, Robert C. Williamson, Alex J. Smola, John Shawe-Taylor, and John C. Platt. 1999.
Support vector method for novelty detection. In Advances in Neural Information Processing Systems
12, [NIPS Conference, Denver, Colorado, USA, November 29 - December 4, 1999, pages 582–588. The
MIT Press.

Fabrizio Sebastiani. 2002. Machine learning in automated text categorization. ACM Comput. Surv.,
34(1):1–47, March.

Ekaterina Shutova and Lin Sun. 2013. Unsupervised metaphor identification using hierarchical graph
factorization clustering. In Human Language Technologies: Conference of the North American Chapter
of the Association of Computational Linguistics, Proceedings, June 9-14, 2013, Westin Peachtree Plaza
Hotel, Atlanta, Georgia, USA, pages 978–988. The Association for Computational Linguistics.

David M. J. Tax and Robert P. W. Duin. 2004. Support vector data description. Mach. Learn., 54(1):45–
66, January.

Hwanjo Yu, ChengXiang Zhai, and Jiawei Han. 2003. Text classification from positive and unlabeled
documents. In Proceedings of the 2003 ACM CIKM International Conference on Information and
Knowledge Management, New Orleans, Louisiana, USA, November 2-8, 2003, pages 232–239. ACM.

916

Multilabel Subject-based Classification of Poetry

Andr

´

es Lou, Diana Inkpen and Chris T

ˇ

an

ˇ

asescu (Margento)

University of Ottawa
School of Electrical Engineering and Computer Science

800 King Edward, Ottawa, ON, Canada, K1N 6N5

Abstract

Oftentimes, the question “what is this poem about?” has no
trivial answer, regardless of length, style, author, or context
in which the poem is found. We propose a simple system
of multi-label classification of poems based on their subjects
following the categories and subcategories as laid out by the
Poetry Foundation. We make use of a model that combines
the methodologies of tf-idf and Latent Dirichlet Allocation
for feature extraction, and a Support Vector Machine model
for the classification task. We determine how likely it is for
our models to correctly classify each poem they read into one
or more main categories and subcategories. Our contribution
is, thus, a new method to automatically classify poetry given
a set and various subsets of categories.

Introduction

Poetry computational analysis is becoming more and more
popular, though the field remains largely unexplored, as ev-
idenced by the lack of a substantial body of work published
(Kaplan and Blei 2007). Text classification methods, how-
ever efficient or at least effective when processing prose, of-
ten have to be modified and fine-tuned in a very different
manner when dealing with poetry. While it may appear at
first that any sort of in-depth analysis applied to poetry is
a monumental task for a machine (because of the richness
of meanings and information that can be contained in a sin-
gle poem, a single verse, or sometimes even a single word),
studies like those of Greene, Bodrumlu, and Knight (2010)
and Kao and Jurafsky (2012) show that this is indeed pos-
sible, and that tasks such as machine translation and natural
language generation can be carried out to a certain degree of
effectiveness even when the data involved is poetry.

While poetry can be classified using many different eval-
uation metrics, such as subject, historical period, author,
school, place of origin, etc, we focus entirely on a subject-
based classification task, making exclusive use of the lexical
content of each poem in our corpus to determine the cate-
gories to which it belongs.

Related Work

While there exists a volume of work related to computational
poetry, the field is still relatively unexplored. Kaplan and

Copyright c� 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Blei (2007) showed that it is possible to classify a group
of poems in terms of style and to visualize them as clus-
ters. Kao and Jurafsky (2012) showed that both concrete fea-
tures, such as rhyme and alliteration, and abstract features,
like positive emotions and psychological well-being, can be
used to determine whether a certain poem was written in the
style of prestigious, award-winning poets or amateur poets.
Features such as rhyme or rhythm can be extracted and ab-
stracted from verses into syllable-stress patterns for further
processing, as shown by (2010) and (2010). Jamal, Mohd,
and Noah (2012) used a Support Vector Machine model to
classify traditional Malay poetry called pantun, which is a
form of art used to express ideas, emotions and feelings in
the form of rhyming lines. The authors classified the po-
ems by theme; they also trained a classifier to distinguish
poetry from non-poetry. A total of 1500 pantun divided into
10 themes and 214 Malaysian folklore documents were used
as the training and testing datasets. This work is similar to
our work since the themes are similar to our categories, but
we also have subcategories, and our models use additional
features.

We note that many of the resources employed in the craft-
ing of poetry can indeed be processed, or “understood”, by
a machine, even if there are many gaps yet to be filled: Gen-
zel, Uszkoreit, and Och (2010) point out that the task of pre-
serving the form and meaning of a poem is an example of
an area where machine translation might never replace a hu-
man translator, though they point out that there is work to be
done in the field.

Classifying poetry

In this work, we focus on how the vocabulary of a poem
determines its subject. While seemingly intuitive, this
notion is a much more difficult task to perform than what
it seems at first glance. As an example, let us consider the
following excerpt from The Love Song of J. Alfred Prufrock,
by T. S. Eliot:

Let us go then, you and I,
When the evening is spread out against the sky
Like a patient etherized upon a table;
Let us go, through certain half-deserted streets,
The muttering retreats
Of restless nights in one-night cheap hotels
And sawdust restaurants with oyster-shells:

No. of Poems Fraction
Total 7214 %
Love 1250 17.3
Nature 2218 30.7
Social Commentaries 2258 31.3
Religion 848 11.8
Living 3103 43
Relationships 2524 35
Activities 1144 15.9
Arts & Sciences 1723 23.9
Mythology & Folklore 356 4.9

Table 1: The nine categories and the total number of poems
in in our training set.

Streets that follow like a tedious argument
Of insidious intent
To lead you to an overwhelming question ...
Oh, do not ask, “What is it?”
Let us go and make our visit.

As is the case with many modern and contemporary po-
ems, the subject of this celebrated high modernist piece is
problematic, elusive, and multilayered. The question of
what category this poem belongs to has a nebulous answer.
The title, while indicative, cannot be used to readily classify
it as a “Love” poem. Furthermore, the fact that it belongs
to a certain category such as “Love” does not imply that it
does not belong to a different category as well, such as “Liv-
ing”, nor does it imply whether it belongs to a subcategory
thereof, specifically, the subcategory of “Marriage & Com-
panionship” (indeed, as we will see, unequivocal single cat-
egorization is rare). Furthermore, is the speaker’s insistent
urge to travel and discover (new?) places actually a face-
tious one, as some of his diction strongly suggests, and then
what is the target of his irony? Are possibly capital existen-
tial questions as the one in the penultimate line muffled by
the modern condition of pointless rambling, undiscriminat-
ing consumerism, and chronic disorientation? And where is
the announced love in the “tedious argument” of the alien-
ating placeless cityscape? The task of determining whether
a poem belongs to any given number of categories and sub-
categories, by means of analyzing its lexical content, is the
objective of our work.

Data

The Poetry Foundation’s goal since its establishment in 2003
is “to discover and celebrate the best poetry and to place it
before the largest possible audience.”1 The foundation is a
large organization, and its website includes a corpus of sev-
eral thousand poems categorized by subject, occasion, holi-
day, and several others.

The foundation is the successor to the Modern Poetry As-
sociation, founded in 1941 and the previous publisher of Po-

etry magazine. Today, the Poetry Foundation is one of the
largest literary foundations in the world.

The corpus we used to train our classifying models was
the Poetry Foundation’s archive of poetry as of November

1http://www.poetryfoundation.org/foundation/about

2014 2. We developed a method of parsing and download-
ing the poem embedded on the HTML of every page in the
poetry archives. Thus we produced a large corpus of un-
processed documents (more than 7,000 poems), each one of
them annotated with its author, title, and its subjects.

Tokenization is the process of breaking down a string of
characters into substrings comprised of individual words and
punctuation signs, called tokens. A token is a sequence of
characters that we treat as a string; the vocabulary of a text
is the set of tokens that appear in it. We do not focus on all
tokens, but instead on word types, which are ”the form or
spelling of [a] word independently of its specific occurances
in the text” (Bird, Klein, and Loper 2009).

As an example of a tokenization process, we consider the
following verses of Edgar Allen Poe’s The Raven:

Once upon a midnight dreary, while I pondered, weak and
weary,

Over many a quaint and curious volume of forgotten lore–

Splitting these into tokens, we obtain the following set of
unique types: “,”, “–”, “I”, “Once”, “Over”, “a”, “and”, “cu-
rious”, “dreary”, “forgotten”, “lore”, “many”, “midnight”,
“of”, “pondered”, “quaint”, “upon”, “volume”, “weak”,
“weary”, and “while”.

Each poem in our corpus was tokenized and mined for
types, a task from which we built a word list containing
all the types in the corpus and the probability associated to
each type. To reduce the dimensionality of our vector, we
removed stopwords, punctuation signs, capitalization, and
types that did not appear in the whole corpus at least twice.
Thus, we were left with a word list containing 29,537 unique
types.

Table 1 shows the total number of poems in our training
set and the break-down of each category. Since a given poem
may belong to more than one main category, the percentages
do not add up to 100%.

Methodology

Our methodology involves three distinct phases: 1) Deter-
mining the number of categories and subcategories, and their
nature, in which to place each poem; 2) Determine a method
to extract relevant features from each document, and 3) Se-
lecting an appropriate classifying algorithm.

Main Categories and Subcategories

The nine main categories as laid out by the Poetry Foun-
dation’s archive are as follows: “Love”, “Nature”, “So-
cial Commentaries”, “Religion”, “Living”, “Relationships”,
“Activities”, “Arts & Sciences”, and “Mythology & Folk-
lore”.

The same archive divides each main category into several
subcategories, each of which do not appear outside their par-
ent category. Because of time constraints, we only examine
the subcategories of three main categories:

Love: “Desire”, “Heartache & Loss”, “Realistic & Com-
plicated”, “Romantic Love”, “Classic Love”, “Infatuation &

2http://www.poetryfoundation.org/browse/

Crushes”, “Unrequited Love”, “Break-ups & Vexed Love”,
“First Love”.

Living: “Birth & Birthdays”, “Infancy”, “Youth”, “Com-
ing of Age”, “Marriage & Companionship”, “Parent-
hood”, “Separation & Divorce”, “Midlife”, “Growing Old”,
“Health & Illness”, “Death”, “Sorrow & Grieving”, “Life
Choices”, “The Body”, “The Mind”, “Time & Brevity”.

Mythology & Folklore: “Ghosts & the Supernatural”,
“Horror”, “Heroes & Patriotism”, “Greek & Roman Mythol-
ogy”, “Fairy-tales & Legends”.

Feature Extraction

The content-based nature of the classification task makes it
ideal to use two models to extract features from our cor-
pus: Term Frequency-Inverse Document Frequency (tf-idf)
as applied to a Bag-of-Words model, and Latent Dirichlet
Allocation (LDA).

Bag of Word features Each word type is a feature for the
classification and its value could be binary (1 if the word ap-
pears in the document and 0 if not) or based on frequency.
We used tf-idf, because it was shown to work better in text
classification tasks (Sebastiani 2002). tf-idf relates the fre-
quency of a given word within a document to the frequency
of the same word across all documents of a corpus, essen-
tially determining how important the word is within the cor-
pus. Several ways exist to calculate tf(t, d) of a given word;
we used the simple approach of calculating the number of
times the term t appears in a given poem d. idf is given by:

idf(t,D) = ln

N
|{d 2 D | t 2 d}|

where N is the total number of documents in a corpus, d is a
document belonging to the corpus setD and t is a term. Thus
the set in the denominator represents all the documents in the
corpus that contain the term t and the || operator denotes the
cardinality of the set. tf-idf is then given by:

tf � idf(t, d,D) = tf(t, d)⇥ idf(t,D)

LDA features Latent Dirichlet Allocation was first de-
scribed by Blei, Ng, and Jordan (2003) as a “generative
probabilistic model for collections of discrete data, such as
text corpora” (Blei, Ng, and Jordan 2003). The idea of LDA
is to represent each document in a corpus as a collection of
topics, where each topic is characterized by a distribution
over a set of words. LDA assumes the following generative
process for each document d in a corpus D (Blei, Ng, and
Jordan 2003):
• Choose an N number of words in the form a Poisson distribu-

tion.

• Choose ✓ ⇠ Dir(↵)

• For each word wn in N :

– Choose a topic zn ⇠ Multinomial(✓)

– Choose a word wn from p(wn|zn, �)

With this and the diagram in Figure 1, we present the full
probability equation as written by Savov (2009):

P (W, Z, ✓, ↵, �) =

QT

k=1
P ('k; �)

QD
d=1

P (✓d; ↵)QNd
w=1

P (Zd,w | ✓d)P (Wd,w | 'Zd,w)

where P (Zj,w | ✓d) is the probability of picking a topic Z
for a word w from a document d, given the topic proportion
of d is ✓d, and P (Wd,w | 'Zd,w) is the probability of pick-
ing word W for the w-th word in document d assuming we
were drawing it from the topic distribution for topic Zj,w.

In practice, the challenge of using LDA lies in either em-
pirically or experimentally estimating the parameters from
which the model would produce our corpus. For our task,
we used the Gensim Python module to implement an LDA
model using Gibbs sampling for parameter estimation. For
a detailed analysis on utilizing this method, see (Griffiths
and Steyvers 2004). LDA has been shown to be an efficient
way of performing text classification tasks and has become
a popular tool in different areas of the subject. See (Li et al.
2011) and (Zhou, Li, and Liu 2009) for examples.

The documents can be represented as a collection of top-
ics and each word in each document is associated with a
distribution of these topics. The topics look like clusters
of words with certain probabilities /weights that reflect the
importance of each word for the topic. Each document is
assigned a number of topics, each having a certain proba-
bility/weight. Thus, the topics will be used as features for
our classifiers, and each document will be represented by
the topics assigned to it by LDA, while the values of the
features are the assigned probabilities/weights.

Feature Selection We filtered the resulting feature set
with a �2 ranking algorithm. Pearson’s �2

test is a statis-
tical test used to determine whether two events are indepen-
dent of each other: the higher the �2 statistic, the more likely
it is that the two events are dependent of each other. �2 is
actually somewhat inaccurate when it comes to determining
the level of independence between two events to one degree
of independence, and it is prone to rank as dependent a num-
ber of features with little actual dependence; however, Man-
ning, Raghavan, and Schtze (2008) showed that the noise
produced by these is not important for a classification task as
long as no statements about statistical dependence is made.
Using this method, we kept the 1000 highest ranking word-
types as features.

Classifiers

To build our classifiers, we used a Support Vector Machine
model, namely Weka’s SMO classifier with a polynomial
kernel (Hall et al. 2009). A Support Vector Machine

(SVM) is a model wherein input vectors are non-linearly
mapped to a very high-dimension feature space, [w]here a
linear decision surface is constructed. Special properties of
the decision surface ensures high generalization ability of
the learning machine (Cortes and Vapnik 1995). SVM has
shown to be very efficient in text classification tasks, and
has been a standard in the field for over a decade (Joachims
1998).

tf-idf Accuracy Precision Recall F-Measure AUC
Love 0.888 0.883 0.888 0.873 0.711
Nature 0.831 0.83 0.831 0.823 0.764
Social Commentaries 0.809 0.806 0.809 0.798 0.738
Religion 0.908 0.896 0.908 0.895 0.678
Living 0.748 0.754 0.748 0.74 0.728
Relationships 0.769 0.775 0.769 0.749 0.697
Activities 0.875 0.864 0.875 0.85 0.642
Arts & Sciences 0.849 0.85 0.849 0.83 0.711
Mythology & Folklore 0.958 0.949 0.958 0.948 0.625
Average 0.848 0.845 0.848 0.834 0.699

Baseline 0.794 0.788 0.794 0.790 0.616

Table 2: Binary model output for each of the main categories using only bag-of-words. Baseline denotes the result obtained
without feature selection. Note that using feature selection produces a considerably higher AUC value.

tf-idf + LDAk=100 Accuracy Precision Recall F-Measure AUC
Love 0.888 0.884 0.888 0.873 0.71
Nature 0.831 0.829 0.831 0.822 0.764
Social Commentaries 0.807 0.804 0.807 0.797 0.737
Religion 0.909 0.898 0.909 0.897 0.682
Living 0.745 0.750 0.745 0.738 0.726
Relationships 0.770 0.777 0.770 0.750 0.699
Activities 0.875 0.865 0.875 0.851 0.644
Arts & Sciences 0.849 0.850 0.849 0.830 0.711
Mthology & Folklore 0.957 0.949 0.957 0.948 0.622
Average 0.848 0.845 0.848 0.834 0.699

tf-idf + LDAk=500

Love 0.887 0.884 0.887 0.872 0.709
Nature 0.832 0.83 0.832 0.823 0.765
Social Commentaries 0.806 0.802 0.806 0.795 0.734
Religion 0.91 0.899 0.91 0.897 0.678
Living 0.749 0.754 0.749 0.742 0.73
Relationships 0.770 0.776 0.770 0.751 0.700
Activities 0.874 0.865 0.874 0.849 0.638
Arts & Sciences 0.849 0.850 0.849 0.831 0.712
Mythology & Folklore 0.957 0.948 0.957 0.947 0.622
Average 0.848 0.845 0.848 0.834 0.699

tf-idf + LDAk=1000

Love 0.889 0.885 0.889 0.874 0.712
Nature 0.833 0.832 0.833 0.825 0.766
Social Commentaries 0.805 0.801 0.805 0.794 0.733
Religion 0.909 0.898 0.909 0.896 0.68
Living 0.751 0.757 0.751 0.744 0.732
Relationships 0.77 0.776 0.77 0.751 0.7
Activities 0.873 0.863 0.873 0.848 0.638
Arts & Sciences 0.851 0.852 0.851 0.833 0.715
Mythology & Folklore 0.958 0.949 0.958 0.948 0.628
Average 0.849 0.846 0.849 0.835 0.700

Table 3: Binary model outputs for each of the main categories using tf-idf and LDA.

The experiments we ran consisted of two separate tasks:
the classification of poems into one or more of the nine
main categories, and the classification of poems inside one
or more subcategories belonging to a main category.

The binary nature of a SVM classifier meant that each
document, given a category or subcategory a, had to be
classified as either “belonging to a” or “not belonging to
a”. We therefore had to train several binary models, one for

each category and each subcategory analyzed. Each model
is evaluated using the standard measures: accuracy, preci-
sion, recall (all for positive values for each classifier), and
area under the ROC curve (AUC)3. For our evaluation, we
performed a 10-fold cross-validation (the data is split into
k = 10 equal-sized subsets; 1 subset is used for validation

3The ROC curve plots the true positive rate against the false
positive rate at various threshold settings.

Living tf-idf+LDAk=500 Accuracy Precision Recall F-Measure AUC
Birth & Birthdays 0.976 0.975 0.976 0.97 0.648
Infancy 0.982 0.802 0.979 0.977 0.587
Youth 0.906 0.905 0.906 0.896 0.757
Coming of Age 0.951 0.953 0.951 0.935 0.611
Marriage & Companionship 0.955 0.957 0.955 0.941 0.614
Parenthood 0.924 0.928 0.924 0.908 0.678
Separation & Divorce 0.984 0.984 0.984 0.979 0.591
Midlife 0.973 0.940 0.973 0.973 0.516
Growing Old 0.902 0.909 0.902 0.875 0.618
Health & Illness 0.939 0.937 0.939 0.925 0.658
Death 0.859 0.864 0.859 0.847 0.766
Sorrow & Grieving 0.901 0.909 0.901 0.875 0.632
Life Choices 0.952 0.939 0.952 0.937 0.560
The Body 0.939 0.923 0.939 0.912 0.514
The Mind 0.929 0.929 0.929 0.905 0.570
Time & Brevity 0.882 0.885 0.882 0.868 0.750
Average 0.935 0.921 0.934 0.920 0.629

Mythology & Folklore tf-idf+LDAk=100 Accuracy Precision Recall F-Measure AUC
Ghosts & the Supernatural 0.905 0.916 0.905 0.897 0.818
Horror 0.952 0.907 0.952 0.929 0.500
Heroes & Patriotism 0.810 0.851 0.810 0.779 0.692
Greek & Roman Mythology 0.960 0.676 0.69 0.673 0.626
Fairy-tales & Legends 1.000 1.000 1.000 1.000 0.000
Average 0.925 0.870 0.871 0.855 0.527

Love tf-idf+LDAk=500 Accuracy Precision Recall F-Measure AUC
Desire 0.837 0.841 0.837 0.822 0.741
Heartache & Loss 0.892 0.901 0.892 0.861 0.616
Realistic & Complicated 0.816 0.822 0.816 0.798 0.720
Romantic Love 0.837 0.835 0.837 0.824 0.735
Classic Love 0.942 0.938 0.942 0.93 0.664
Infatuation & Crushes 0.884 0.882 0.884 0.873 0.751
Unrequited Love 0.915 0.913 0.915 0.893 0.615
Break-ups & Vexed Love 1.000 1.000 1.000 1.000 0.000
First Love 0.971 0.969 0.971 0.962 0.593
Average 0.899 0.900 0.899 0.885 0.604

Table 4: Binary model outputs for each of the subcategories of Living, Mythology & Folklore and “Love”.

while the remaining k� 1 are used as training data; the pro-
cess is repeated k times, each time a different subset being
used for training). Our results are shown in Tables 2-4.

Results and Discussion

The issue of data imbalance could not be sorted out without
decreasing the size of our corpus; there is a disproportion-
ally larger amount of instances under the “Living” category
and a disproportionally smaller amount of instances under
“Mythology & Folklore”. Overall, the results are accept-
able, with all AUC measures well above 0.6 but none over
0.8. Further repetitions of the experiments and fine-tuning
the parameters of the SVM classifier do not significantly
improve the data. The subcategories show overall similar
results, while presenting scarcity as an additional limiting
factor.

Main Categories

We performed an experimental run with the entirety of the
word-types extracted from the corpus, without including the

LDA models in our training data. Results are shown in Ta-
ble 2. The average AUC of this run is the lowest of all our
experiments with the main categories.

After performing feature selection, we performed two sets
of experimental runs: using only Bag-of-Words to extract
features, and integrating both Bag-of-Words and LDA. Our
purpose was to determine the impact the latter would have
on our results, since the literature has shown the model to be
popular in classification tasks. Our results, however, show
that, while tf-idf alone delivers better results for some cate-
gories and tf-idf+LDA delivers better results for others, the
average AUC is identical between the models, with all other
statistics leaning, however slightly, towards tf-idf+LDA. The
results of tf-idf are shown in Table 2.

The Gibbs sampling method of estimating LDA parame-
ters leaves the task of selecting the number of LDA topics,
k, to the experimenter. We made three experimental runs
of tf-idf+LDA and k = 100, 500, 1000. Results are shown
in Table 3. We also attempted to fully represent our corpus
as an LDA distribution of topics by using nothing but the

k = 500 number of topics in our feature-space; they clearly
show that stand-alone LDA topics are insufficient for any
useful practical result4.

Subcategories

The three main categories we selected to perform an exper-
imental run were “Living”, “Mythology & Folklore”, and
“Love”, the first being the largest category in terms of num-
ber of poems, the second being the smallest, and the third
falling somewhere in between.

Table 4 present our results for the subcategories. The av-
erage AUC measurement for the subcategories is noticeably
lower when compared to the main categories. This decre-
ment reflects the relative scarcity of each subcategory, as
there are much fewer instances with which to train each clas-
sifier. “Living” has the highest average AUC, which, again,
reflects the relative scarcity of data for the subcategories of
Love and Mythology & Folklore. The results suggest that a
major increase in the available instances of each category or
subcategory would further improve the performance of the
classifier.

Conclusion and Future Work

We have shown a simple method of determining whether a
given poem belongs to an established category by listing its
vocabulary in relation to the frequency of each term that be-
longs to it. While the idea of poems that do not approach a
single given topic is not controversial, the categories them-
selves are not a universal convention. The very existence (or
lack) of content-based categories of any sort might some-
times be a point of contention against subject-based classifi-
cation tasks. SVM classifiers with feature selection achieved
the best results for the main categories and subcategories.

Future work focusing on the content of poems for classi-
fying purposes should refine models and account for both
poetic diction and form. Style and the use of metaphors
are both content-based concepts that should also be used
in the task of classifying poetry. Advances in metaphor
comprehension and development, as shown by Levy and
Markovitch (2012), show that metaphors represented as
mapping functions over a feature-space are a viable tool to
make a machine “understand” a concept. Advances in rhyme
and rhythm analysis (Genzel, Uszkoreit, and Och 2010) –
which we shall complement with our own work on both me-
ter and more euphonic techniques (alliteration, assonance,
slant rhymes, etc.) as well as established poetic forms (son-
nets, villanelles, terza rimas, etc.)– are steadily paving the
road for automatic classification in such a deeply human
field as poetry.

Never say, your lexicon exhausted,
that for lack of content the lyre is silent
There may not be a poet but
There always shall be poetry
—- Gustavo Adolfo Bécquer

4An average AUC of 0.508

References

Bird, S.; Klein, E.; and Loper, E. 2009. Natural Language

Processing with Python. O’Reilly.
Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent
Dirichlet Allocation. Journal of Machine Learning.
Cortes, C., and Vapnik, V. 1995. Support-Vector Network.
Machine Learning, 20, 273–297.
Genzel, D.; Uszkoreit, J.; and Och, F. 2010. Poetic statistical
machine translation: Rhyme and meter. In Conference on

Empirical Methods in Natural Language Processing, 158–
166.
Greene, E.; Bodrumlu, T.; and Knight, K. 2010. Automatic
analysis of rhythmic poetry with applications to generation
and translation. In Conference on Empirical Methods in Nat-

ural Language Processing, 524–533.
Griffiths, T. L., and Steyvers, M. 2004. Finding scientific
topics. Proceedings of the National Aacademy of Sciences

of the United States of America.
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann,
P.; and Witten, I. H. 2009. The WEKA data mining software:
An update. In SIGKDD Explorations, volume 11.
Jamal, N.; Mohd, M.; and Noah, S. A. 2012. Poetry classifi-
cation using Support Vector Machines. Journal of Computer

Science 8, Issue 9:1441–1446.
Joachims, T. 1998. Text categorization with support vec-
tor machines: Learning with many relevant features. In
Proceedings of ECML-98, volume 1398 of Lecture Notes in

Computer Science. Springer Berlin Heidelberg. 137–142.
Kao, J., and Jurafsky, D. 2012. A computational analysis of
style, affect, and imagery in contemporary poetry. In Work-

shop on Computational Linguistics for Literature, 8–17.
Kaplan, D. M., and Blei, D. M. 2007. A computational
approach to style in american poetry. In Seventh IEEE Inter-

national Conference on Data Mining, 553–558.
Levy, O., and Markovitch, S. 2012. Teaching machines to
learn by metaphors. Proceddings of the Twenty-Sixth AAAI

Conference on Artificial Intelligence.
Li, K.; Xie, J.; Sun, X.; Ma, Y.; and Bai, H. 2011. Multi-
class text categorization based on LDA and SVM. Procedia

Engineering 1963–1967.
Manning, C. D.; Raghavan, P.; and Schtze, H. 2008. Assess-

ing �2
as a feature selection method. Cambridge University

Press.
Savov, I. 2009. Latent Dirichlet Allocation for scientific
topic extraction. Unpublished.
Sebastiani, F. 2002. Machine learning in automated text
categorization. ACM Computing Surveys 34(1):1–47.
Zhou, S.; Li, K.; and Liu, Y. 2009. Text categorization based
on topic model. Atlantis Press 398–409.

Metaphor Detection by Deep Learning and
the Place of Poetic Metaphor in Digital Humanities

Chris Tanasescu,∗ Vaibhav Kesarwani, Diana Inkpen
School of Electrical Engineering and Computer Science

University of Ottawa
Ottawa, Ontario, Canada

margento.official@gmail.com, vkesa079@uottawa.ca, diana.inkpen@uottawa.ca

Abstract

The paper presents the work that has been done as part of
the Graph Poem project in developing metaphor classifiers,
now by deep learning methods (after previously having de-
veloped rule-based and machine learning algorithms), and a
web-based metaphor detection tool. After reviewing the exist-
ing work on metaphor in natural language processing (NLP),
digital humanities (DH), and artificial intelligence (AI), we
present our own research and argue in favor of adopting data-
intensive approaches, developing NLP classifiers, and apply-
ing graph theory (and particularly networks of networks) in
computational literary or poetry analysis, while also high-
lighting the relevance of such work to DH, NLP, and AI in
general.
keywords: poetry; metaphor; natural language processing;
deep learning; digital humanities; graph theory applications;
networks of networks

Introduction

The purpose of this paper is to present the results the authors
have obtained in applying deep learning methods in poetic
metaphor detection as a continuation and expansion of our
previous work on automatic metaphor classification in po-
etry. As both our present and previous work on metaphor are
part of a larger project–The Graph Poem–involving a holis-
tic comprehensive computational approach to poetry, we
will dedicate this section to briefly introducing the overall
project and discussing its place in Digital Humanities (DH).
Then in the second section we will zoom in on our previous
work on metaphor detection in the comparative context of
the relevant metaphor computational analysis literature and
DH metaphor-relevant projects and approaches. The subse-
quent sections will focus on the current research and results,
and the last part will present our conclusions and work to be
done in the future.

The concept behind the Graph Poem project was initially
a creative writing and generative one, writing, assembling,
(post)digitally or X-algorithmically generating and/or ex-
panding poetry corpora based on commonalities between
poems. Poems are nodes in a network graph while edges

∗Margento
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

represent commonalities initially drawn manually (MAR-
GENTO 2012) and for which later on computational tools
have been developed. The creative and generative pur-
poses have thus naturally switched to critical and analytical
ones, while the project joined a more general trend in DH
regarding—in what was called the second and third wave
in DH (Berry 2011)—a transition from classification or re-
trieval to more creative approaches and tools, or moreover,
a fusion of the two. The latter was foregrounded in a sig-
nificant way by N. Katherine Hayles and Jessica Pressman
(2013) who underscored the complementarity if not con-
gruence between these two sides of the coin in advancing
a pun-like desideratum: making; critique. And this is per-
haps particularly relevant to poetry and literature in general
as it came against the background of a proposed new subject:
comparative textual media.

In the specific case of our project, textual-medium-related
concerns are occasioned by the more general critical ap-
proach to data. Our tenet is that generally speaking for dig-
ital tools to be relevant—in poetry computational analysis
and not only—they need to be trained and applicable to sub-
stantial amount of data. And while it is naturally debatable
what magnitude would that specifically entail in the case
of poetry, and since big data is at the same time a concept
that has features and implications that are hardly applica-
ble to literature, there is indeed possible to adapt another
subject-relevant concept to poetry: data intensive research
(Critchlow and Kleese van Dam 2013). Such an approach
entails working with as large amounts of data as possible
(and we will refine this statement in a bit) while also apply-
ing methods and developing tools that are specifically sensi-
tive to data in quantitative and qualitative fashions. We there-
fore looked for large available databases and archives, and
settled on the Poetry Foundation browser that contains tens
of thousands of poems and has been manually annotated for
various poetic features ranging from topic to form to period
and region. The quantitative component is hence obvious,
and that is part of our contribution since other work in the
field has involved significantly smaller datasets, at the scale
of sometimes even one hundred poems (Kao and Jurafsky
2012) (Dalvean 2013), with otherwise significant results in
poetry automated analysis).

While in the existing work it is true that the magnitude
of the explored data is perhaps relative and not necessarily

The Thirty-First International Florida
Artificial Intelligence Research Society Conference (FLAIRS-31)

122

consequential in terms of the quality of the results, this as-
pect becomes of the essence in developing deep learning ap-
proaches, as is the case of the work presented in this paper.
As will see below, deep learning proves to provide better
results than other methods, but in order for this method to
work, the amount of data has to be increased beyond certain
limits.

The issue of data and data intensive research is also of
great importance for the Graph Poem project as a whole.
The focus is on poetry corpora and the features of the assem-
bled network graphs—such as connectivity, the existence of
cliques and of cut vertices, percolation, etc.—tell us signif-
icant things about a specific corpus or corpora (be it a ran-
dom selection, a volume, a whole oeuvre or several oeuvres
of several poets) and are obtainable depending on the quan-
tity, quality, and computational analysis of data, since the
output of our poetic-feature-focused tools (the processing of
form, topic, style, etc.) is the input data for the graph visu-
alization and analysis component. Graph theory has never
been to our knowledge deployed in poetry, but network
graphs have been used in other literature-focused chapters
of DH and computational linguistics, specifically in social
network analysis as applied in modeling fiction characters
(Agarwal, Kotalwar, and Rambow 2013) (also see (Vala et
al. 2016) for a comprehensive literature review) but also in
structure-based clustering of novels (Ardanuy and Sporleder
2014) and in generating narrative (Sack 2012). Besides the
inevitable genre-related differences between these applica-
tions and the ones pertaining to the Graph Poem project,
there is another significant distinction: all of the graphs in
fiction analysis are plain (single-layer) networks whereas the
ones assembled and analyzed in the latter are multiplex net-
works (or multigraphs). Multiplex networks are graphs in
which vertices are connected by different types (layers) of
edges, therefore a particular case of networks of networks
that behave in certain critical respects differently from plain
networks (D’Agostino and Scala 2014) and whose impor-
tance for the study of literature has been explored recently,
for instance, in an article (Tanasescu and Tanasescu 2018)
deploying multiplex networks in translation studies. The
vertices in our network graphs are connected, therefore, in
various layers, and analyzing those graphs involves process-
ing and classifying the features in these layers independently
and then analyzing the whole as a multiplex network with its
specific characteristics. One of these layers is metaphor.

Context and Previous Work
In our previous work (Kesarwani et al. 2017) we have devel-
oped a classifier combining rule-based and machine learn-
ing methods, and in this paper we are presenting the deep
learning tool deploying convoluted neural networks we have
developed for the same purpose but obtaining better results.

Metaphor has been touched on in a number of recent DH
publications that are, if not developing tools, posing theoret-
ical questions regarding, for instance, metaphorical think-
ing in media studies analysis (Graham and Brook 2016),
the place of metaphor in digital hermeneutics and as em-
bedded in an interface (Armaselu and van den Heuvel 2017)
or the role of metaphors in shaping public opinion (Núñez et

al. 2017). But perhaps the most elaborate metaphor-focused
DH project to this day is the Metaphor Map of English at
the University of Glasgow (Hamilton, Bramwell, and Hough
2016) that visualizes the use of metaphor in the Histori-
cal Thesaurus with links between various categories, such
as People or Travel and Travelling, all taken from the The-
saurus and falling under three general classes, external, men-
tal, and social world. While this project involves an impres-
sive database and interface, it does not work as an automatic
classifier, and it is limited to visualizing and extracting data
from the Thesaurus, with no option to run the tool on any
other data. A poetry search for instance will produce a ta-
ble of examples of metaphors from the Historical Thesaurus
alongside their category, (the source texts) year of occur-
rence, and strength (strong or weak).

The only other DH project that has aimed to process po-
etic metaphor computationally is POEMAGE. The project
has actually started as a visualization system for exploring
the sonic topology of a poem (McCurdy et al. 2016) in the
same period when the Graph Poem team began working on
a rhyme classifier (Tanasescu, Paget, and Inkpen 2016), but
has more recently turned to considering metaphor process-
ing as well. Unlike the Graph Poem, though, POEMAGE
does not involve ”creating a tool that will algorithmically
identify and visualize metaphor” (Coles 2017), as the au-
thors themselves admit, but ”getting at metaphor” in an
”oblique way” by pointing the human reader to places in the
text the machine is uncertain of in terms of pronunciation
and meaning and thus signaling potential metaphor occur-
rences.

In our previous work on metaphor (Kesarwani et al. 2017)
we researched what has been done in this respect in machine
learning and NLP, and since we were the first to approach
metaphor in poetry (and literature in general), we turned
to what had been accomplished in processing metaphor in
non-literary texts and drew on what was usable in poetry as
well. Turney’s (Turney et al. 2011) notion of tracking down
abstract-concrete discrepancies as indication of possible oc-
currences of metaphors became a feature in our model. We
combined that with concrete category overlap (Assaf et al.
2013), and ConceptNet (Speer and Havasi 2012), and one of
our alternative computations of metaphor expanded on the
part of speech tagging used by Neuman (2013) who in his
turn borrowed the method from Krishnakumaran and Zhu
(2007). The expansion involved updating one of their syn-
tactic sequences and adding two more (noun-verb and verb-
verb on top of their adjective-noun and noun-verb-noun with
two subcategories, copulative and regular verb) and deploy-
ing word embeddings. So far, in (Kesarwani et al. 2017),
we have developed a classifier for the first type, noun-verb-
noun, which we have refined by allowing the nouns to have
determinants, while our future work will involve both devel-
oping classifiers for the other types and a generic classifier
non-dependent on any given syntactic patterns. With regards
to word embeddings, which are a novel way of representing
words as vectors aimed at redefining the high dimensional
word features into low dimensional feature vectors by pre-
serving the contextual similarity in the corpus (Kesarwani
et al. 2017), they also played a key role in our approach. In

123

fact, as we will explain in a bit, we trained our own word
embeddings.

The above-mentioned syntactic structural sequences were
developed into a rule-based method, and then, after research-
ing another major contribution to metaphor natural language
processing (Shutova, Kiela, and Maillard 2016) we also
developed a statistical model and compared the results. It
turned out, quite predictably, that the latter works signifi-
cantly better. We also had to develop our own corpus and do
manual annotation for training and testing our model: 680
sentences out of 1500 extracted only for type 1 metaphor
[noun-copulative verb-(determiner)-noun] with two annota-
tors and an arbiter deciding on disagreements.

Yet this was not our only training data. We combined
our dataset with two other sets, with the notations TroFi
(Birke and Sarkar 2006) and Shutova (Mohammad, Shutova,
and Turney 2016), while the abbreviation we have picked
for ours is PoFo. The results for PoFo + TroFi + Shutova
were significantly better than those on PoFo alone, which
proved an interesting twofold point, namely that the above-
mentioned data intensive approach improves outcomes in-
deed, and that in detecting metaphor in poetry, non-poetry
data are as helpful as poetry data.

We also reached in certain other respects a converse con-
clusion, that is, that tools trained on poetry data are some-
times better for non-poetry tasks than the ones trained on
non-poetry data. We trained our own word embeddings on
the PoFo poems and named the resulting model the Graph-
Poem model, which we did not use for metaphor detec-
tion, as we wanted the embeddings to be rooted in corpora
that contained as few metaphors as possible. The options in
terms of available generally used embeddings were GloVe
(Pennington, Socher, and Manning 2014) and word2vec
(Mikolov et al. 2013) vectors, yet we chose the former
as they had been shown to work better for many lexical-
semantic tasks (Pennington, Socher, and Manning 2014).
Still, these word embeddings of ours turned out to be bet-
ter than the GloVe ones, and we deployed them in our poetic
diction processing tasks. We are currently working on com-
prehensive technical evaluations, but the superiority of our
own embeddings is already intuitively obvious for all exam-
ples we have run our tool on as compared to GloVe.

The results in Table 1 and Table 2 show the words re-
lated to the word love in the GloVe and GraphPoem models
in decreasing order of similarity score. It can be seen that
the words in the GloVe model are more conversational (pro-
nouns like me, my, you, I and she reinforce this) and less
thematic, whereas the words from the GraphPoem model
are more consistently—semantically and logically—related
to the query love. Even an antonym like hate popping up
in the GraphPoem model fits better in the list (on the 12th
position nevertheless) than extraneous results such as mind
in the GloVe one, given the general (psychological and not
only) potential relevance of the love-hate complex and am-
bivalence, which is hardly to be found in the other case.

Deep Learning Classification
In what follows we will describe our metaphor deep learn-
ing classifier and our web-based application for metaphor

Word Score

me 0.738
passion 0.735
my 0.733
life 0.729
dream 0.727
you 0.718
always 0.711
wonder 0.709
i 0.708
dreams 0.707
mind 0.706
friends 0.704
true 0.703
loves 0.700
feel 0.698
happy 0.698
fun 0.697
kind 0.696
soul 0.695
she 0.695

Table 1: LOVE in the GloVe model

Figure 1: Layers in a convolutional neural network, from
(Kim 2014).

detection.
The first requirement for deep learning classification is

lots of examples / data points (by the thousands). Earlier,
we tested our PoFo dataset (containing 680 data points with
340 for training and 340 for test) and the F-score for deep
learning classifier was worse than machine learning ones.
Therefore, when we were able to collect more data (around
4870 instances) with metaphor (poetry and non-poetry) by
adding data from (Mohammad, Shutova, and Turney 2016)
and (Birke and Sarkar 2006), we experimented with Convo-
lutional Neural Networks (CNN) (shown in Figure 1) (Kim
2014) to examine whether we can get any gains in F-score
when compared to the standard machine learning classifiers.
Figure 2 shows the details of the CNN text classifier schema.

We used the Keras (Chollet and others 2015) deep learn-
ing framework with a Tensorflow (Abadi et al. 2015) back-
end and used a local GPU to accelerate the training process.
The parameters that we tested on are given in Table 3.

The results of our experiments are given in Table 4. The
best result, i.e., F-score 0.833 for metaphor and F-score
0.744 for the non-metaphor class was seen with epochs 300,
batch 70, neurons 206 and inputs 103. Though we tested on
hundreds of combinations of hyper-parameters, only the top

124

Word Score

joy 0.791
sorrow 0.783
hope 0.781
desire 0.764
grief 0.759
despair 0.742
delight 0.737
pleasure 0.730
beauty 0.730
pain 0.729
bliss 0.729
hate 0.716
pity 0.714
true 0.709
comfort 0.706
shame 0.702
passion 0.701
faith 0.697
fear 0.697
hunger 0.695

Table 2: LOVE in the GraphPoem model

Parameter Range

Inputs 103 - 106
Input activation function ReLU, TANH
Hidden layers 1 - 4
Neurons in 1st layer 6 - 306
Output activation function Softmax, Sigmoid
Dropout 0 - 0.9
Outputs 2
Epochs 20 - 1000
Loss function Cat./Binary Cross Entropy
Optimizer ADAM
Batch size 20 - 200

Table 3: Range of parameters tested.

results are being reported here for brevity.
It can be observed that with the same training set and test

set (the test set being the 340 poetry examples), CNN per-
formed significantly better than Support Vector Machines
(SVM) and other machine learning algorithms. A baseline
classifier that always outputs the most frequent class is also
included for comparison. The best F-score for metaphor
class was 0.781, seen with SVM with Pearson Universal
Kernel (Puk). For CNN, we get a gain of 5.2% and we get
a high F-score of 0.833. For the non-metaphor class, KNN
obtained a F-score of 0.711. For CNN, we get a gain of 3.3%
and we get a higher F-score of 0.744. For both classes, the
performance is better with CNN.

The major drawback for the CNN classification (when
compared to the other machine learning algorithms) is that
a lot of data points are needed for training. Consequently,
though we got better results for PoFo+TroFi+Shutova

Figure 2: Schema diagram of the CNN text classifier.

dataset collectively, results on the rest of the datasets individ-
ually were worse than the SVM results for both the classes.
We empirically observed that, in our case, anything less than
3,000 instances was insufficient for training the CNN and the
results are much worse (close to the baseline of 50%). If we
are able to overcome this soft threshold of 3,000 data points,
deep learning classification works appreciably better.

Web Application for Generic Metaphor

Detection

We used our best performing machine learning model (SVM
with F-score 0.781) and developed a web application for
Multi-line metaphor detection. This web application works
for not just poetry, but also for any natural language text and
will be available for public use shortly once we complete the
hosting process. For this application, we have not used POS
tag sequence for Type 1 metaphor, instead we use Stanford
NLP parser dependencies given below to extract the poten-
tial word pairs:

• nsubj

• dobj

• nsubjpass

• acl:relcl

Moreover, the pre-trained model (SVM with F-score
0.781) used for prediction in these two applications is se-
rialized to decrease the execution time. It normally takes 10
- 12 seconds for execution. If serialization is not used, exe-
cution time can be as high as 40 seconds.

The application accepts multi-line text and outputs line-
by-line result for the analysis. There can be multiple word-
pairs for each line that are analysed for metaphoric intent.
Figure 3 shows a screenshot of the web application. The
poem (excerpt) (Lorde 2000) entered in the application is
given below:

Poem Title : Afterimages (excerpt)
Author : Audre Lorde

A woman measures her life’s damage
my eyes are caves, chunks of etched rock

tied to the ghost of a black boy
whistling

crying and frightened

125

metaphor literal
Parameters Precision Recall F-score Precision Recall F-score
Baseline 0.565 1.000 0.722 0.000 0.000 0.000
SVM (Puk) 0.759 0.804 0.781 0.724 0.670 0.696
e:200 b:5 n:202 i:102 0.812 0.795 0.804 0.698 0.720 0.709
e:200 b:50 n:202 i:102 0.810 0.826 0.818 0.727 0.704 0.715
e:100 b:150 n:202 i:102 0.805 0.833 0.819 0.732 0.694 0.712
e:100 b:70 n:202 i:102 0.811 0.850 0.830 0.754 0.699 0.725
e:100 b:70 n:206 i:103 0.823 0.840 0.831 0.748 0.725 0.736
e:250 b:70 n:206 i:103 0.837 0.823 0.830 0.737 0.756 0.746
e:300 b:70 n:206 i:103 0.831 0.836 0.833 0.748 0.740 0.744

Table 4: Top results for SVM & CNN classification. Puk denotes Pearson Universal Kernel. The CNN was tested on various
hyper-parameters, where e denotes epochs, b denotes batch size, n denotes the number of neurons in 1st layer and i denotes the
number of inputs. All other hyper-parameters remained constant, input activation : RELU and output activation : SOFTMAX.

her tow-headed children cluster
like little mirrors of despair

their father’s hands upon them
and soundlessly

a woman begins to weep.

The complete result from the application is given below:

Line : A woman measures her life’s damage
Processing measures : woman

Prediction : metaphor
Processing measures : damage

Prediction : metaphor

Line : my eyes are caves, chunks of etched rock
Processing caves : eyes
Prediction : metaphor

Line : her tow-headed children cluster
Processing cluster : children

Prediction : metaphor

Line : like little mirrors of despair
Processing like : mirrors

Prediction : metaphor

Line : their father’s hands upon them
Processing hands : father

Prediction : literal

Line : a woman begins to weep.
Processing begins : woman

Prediction : literal

Conclusions and Future Work

While work has been done in artificial intelligence and in
digital humanities (DH) on processing poetry computation-
ally, see for instance the repository of digital-pedagogy-
relevant poetry projects put together by Chuck Rybak (Ry-
bak 2016) this is the first initiative in assembling a com-
prehensive holistic conglomerate of poetry algorithms and
tools. These tools are meant for both poetry analysis and cre-
ative writing/generative purposes and tackle the multifaceted

features of the genre consistently and coordinately, from
topic to form to diction and style. For the latter, so far we
have developed metaphor classifiers that deploy rule-based,
statistical (machine learning), and deep learning methods,
and we have launched a web-based metaphor natural lan-
guage processing (NLP) application. While metaphor has
been tackled in NLP before, the focus of that research has
never been poetic metaphor (or literary tropes in general),
and nor have any DH projects set as (part of) their goal(s)
developing poetic metaphor processing tools. In our own
work in metaphor deep learning classification we have estab-
lished that deep learning, and particularly convoluted neural
networks (CNN) output better results than the other previ-
ously deployed methods, given that the amount of data fed
to the CNN is big enough, which also gave us the oppor-
tunity to verify the validity of the data intensive approach
we have adopted generally in working on the overarching
Graph Poem project. Our future work will include devel-
oping a metaphor classifier not depending on any syntacti-
cal pattern, and integrating the resulting web-based applica-
tion into the overall network graph analysis and visualization
tool.

References

Abadi, M.; Agarwal, A.; Barham, P.; and Zheng, X. 2015.
TensorFlow: Large-scale machine learning on heteroge-
neous systems. Software available from tensorflow.org.

Agarwal, A.; Kotalwar, A.; and Rambow, O. 2013. Auto-
matic extraction of social networks from literary text: A case
study on alice in wonderland. In IJCNLP, 1202–1208.

Ardanuy, M. C., and Sporleder, C. 2014. Structure-based
clustering of novels. In CLfL@ EACL, 31–39.

Armaselu, F., and van den Heuvel, C. 2017. Metaphors in
digital hermeneutics: Zooming through literary, didactic and
historical representations of imaginary and existing cities.
Digital Humanities Quarterly 11(3).

Assaf, D.; Neuman, Y.; Cohen, Y.; Argamon, S.; Howard,
N.; Last, M.; Frieder, O.; and Koppel, M. 2013. Why “dark
thoughts” aren’t really dark: A novel algorithm for metaphor
identification. In Computational Intelligence, Cognitive Al-
gorithms, Mind, and Brain (CCMB), 2013 IEEE Symposium
on, 60–65. IEEE.

126

Figure 3: Screenshot of the multi-line metaphor detection
web application. The full text is not captured in this screen-
shot.

Berry, D. M. 2011. The computational turn: Thinking about
the digital humanities. Culture Machine 12.
Birke, J., and Sarkar, A. 2006. A Clustering Approach for
Nearly Unsupervised Recognition of Nonliteral Language.
In Proc. EACL, 329–336.
Chollet, F., et al. 2015. Keras. https://github.com/fchollet/
keras.
Coles, K. 2017. Getting at metaphor. paper presented at the
digital humanities 2017 conference.
D’Agostino, G., and Scala, A. 2014. Networks of networks:
the last frontier of complexity. Springer.
Dalvean, M. 2013. Ranking contemporary american poems.
Digital Scholarship in the Humanities 30(1):6–19.
Graham, E., and Brook, S. S. 2016. The printing press as
metaphor. Digital Humanities Quarterly 10(3).
Hamilton, R.; Bramwell, E.; and Hough, C. 2016. Mapping
metaphor with the historical thesaurus: a new resource for
investigating metaphor in names.
Hayles, N. K., and Pressman, J. 2013. Comparative tex-
tual media: Transforming the humanities in the postprint
era. University of Minnesota Press.
Kao, J., and Jurafsky, D. 2012. A computational analysis of
style, affect, and imagery in contemporary poetry. In CLfL@
NAACL-HLT, 8–17.
Kesarwani, V.; Inkpen, D.; Szpakowicz, S.; and Tanasescu,
C. 2017. Metaphor detection in a poetry corpus. In Pro-
ceedings of the Joint SIGHUM Workshop at Association for
Computational Linguistics, 1–9.
Kim, Y. 2014. Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882.
Krishnakumaran, S., and Zhu, X. 2007. Hunting elusive
metaphors using lexical resources. In Proceedings of the

Workshop on Computational approaches to Figurative Lan-
guage, 13–20. Association for Computational Linguistics.
Lorde, A. 2000. The collected poems of Audre Lorde. WW
Norton & Company.
MARGENTO. 2012. Nomadosophy. Max Blecher Press.
McCurdy, N.; Lein, J.; Coles, K.; and Meyer, M. 2016.
Poemage: Visualizing the sonic topology of a poem.
IEEE transactions on visualization and computer graphics
22(1):439–448.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Ef-
ficient Estimation of Word Representations in Vector Space.
arXiv preprint arXiv:1301.3781.
Mohammad, S. M.; Shutova, E.; and Turney, P. D. 2016.
Metaphor as a Medium for Emotion: An Empirical Study.
In Proc. *SEM, 23–33.
Neuman, Y.; Assaf, D.; Cohen, Y.; Last, M.; Argamon, S.;
Howard, N.; and Frieder, O. 2013. Metaphor Identification
in Large Texts Corpora. PLOS ONE 8(4):1–9.
Núñez, A.; Gerloff, M.; Do Dinh, E.-L.; Rapp, A.; Gehring,
P.; and Gurevych, I. 2017. A wind of change-shaping public
opinion of the arab spring using metaphors. paper presented
at the digital humanities 2017 conference.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global Vectors for Word Representation. In Proc. EMNLP,
volume 14, 1532–1543.
Rybak, C. 2016. Poetry. Digital Pedagogy in the Humani-
ties: Concepts, Models, and Experiments.
Sack, G. 2012. Character networks for narrative generation.
In Intelligent Narrative Technologies: Papers from the 2012
AIIDE Workshop, AAAI Technical Report WS-12-14, 38–43.
Shutova, E.; Kiela, D.; and Maillard, J. 2016. Black Holes
and White Rabbits: Metaphor Identification with Visual Fea-
tures. In Proc. 2016 NAACL: HLT, 160–170.
Speer, R., and Havasi, C. 2012. Representing General Rela-
tional Knowledge in ConceptNet 5. In Proc. LREC, 3679–
3686.
Tanasescu, R., and Tanasescu, C. 2018. Translator networks
of networks. the case of Asymptote journal. Complexity The-
ory (K. Marais and R. Maylaerts, Eds.).
Tanasescu, C.; Paget, B.; and Inkpen, D. 2016. Automatic
classification of poetry by meter and rhyme. In FLAIRS Con-
ference, 244–249.
Turney, P. D.; Neuman, Y.; Assaf, D.; and Cohen, Y. 2011.
Literal and Metaphorical Sense Identification through Con-
crete and Abstract Context. In Proc. EMNLP, 680–690. As-
sociation for Computational Linguistics.
Vala, H.; Dimitrov, S.; Jurgens, D.; Piper, A.; and Ruths, D.
2016. Annotating characters in literary corpora: A scheme,
the charles tool, and an annotated novel. In LREC.

127

Deep Learning for Political Science1

Kakia Chatsiou (University of Essex) and Slava Jankin Mikhaylov (Hertie School)2

Introduction

Political science, and social science in general, have traditionally been using computational

methods to study areas such as voting behavior, policy making, international conflict, and

international development. More recently, increasingly available quantities of data are being

combined with improved algorithms and affordable computational resources to predict, learn,

and discover new insights from data that is large in volume and variety. New developments in

the areas of machine learning, deep learning, natural language processing (NLP), and, more

generally, artificial intelligence (AI) are opening up new opportunities for testing theories and

evaluating the impact of interventions and programs in a more dynamic and effective way.

Applications using large volumes of structured and unstructured data are becoming common in

government and industry, and increasingly also in social science research.

This chapter offers an introduction to such methods drawing examples from political

science. Focusing on the areas where the strengths of the methods coincide with challenges in

these fields, the chapter first presents an introduction to AI and its core technology – machine

learning, with its rapidly developing subfield of deep learning. The discussion of deep neural

networks is illustrated with the NLP tasks that are relevant to political science. The latest

1 Forthcoming in Cuirini, Luigi and Robert Franzese, eds. Handbook of Research Methods in Political Science and
International Relations. Thousand Oaks: Sage.
2 Email address: jankin@hertie-school.org

advances in deep learning methods for NLP are also reviewed, together with their potential for

improving information extraction and pattern recognition from political science texts.

We conclude by reflecting on issues of algorithmic bias – often overlooked in political

science research. We also discuss the issues of fairness, accountability, and transparency in

machine learning, which are being addressed at the academic and public policy levels.

AI: Machine Learning and NLP

The European Commission (2019) defines AI as ‘systems that display intelligent behaviour by

analysing their environment and taking actions – with some degree of autonomy – to achieve

specific goals’. As a scientific discipline, AI includes several techniques like machine learning

(with deep learning and reinforcement learning as specific examples), machine reasoning, and

robotics (European Commission, 2019). However, much of what is discussed as AI in the public

sphere is machine learning, which is an ‘algorithmic field that blends ideas from statistics,

computer science and many other disciplines […] to design algorithms that process data, make

predictions, and help make decisions’ (Jordan, 2019).

Machine learning has a history of successful deployment in both industry and academia,

going back several decades. Deep learning has more recently made great progress in such

applications as speech and language understanding, computer vision, and event and behavior

prediction (Goodfellow et al., 2016). These rapid technological advances and the promise of

automation and human-intelligence augmentation (Jordan, 2019) reignited debates on AI’s

impact on jobs and markets (Brynjolfsson et al., 2018; Samothrakis, 2018; Schlogl and Sumner,

2018) and the need for AI governance (Aletras et al., 2016; Benjamins et al., 2005).

Machine learning (and deep learning as its subfield) is defined as the ‘field of study that

gives computers the ability to learn without being explicitly programmed’ (Samuel, 1959). In

this context, ‘learning’ can be viewed as the use of statistical techniques to enable computer

systems to progressively improve their performance on a specific task using data without being

explicitly programmed (Goldberg and Holland, 1988). To be able to learn how to perform a task

and become better at it, a machine should:

• be provided with a set of example information (inputs) and the desired outputs. The goal

is then to learn a general rule that can take us from the inputs to the outputs. This type of

learning is called Supervised Learning. This works well even in cases when the input

information is not available in full;

• be provided with an incomplete set of example information to learn from, where some of

the target outputs are missing. This type of learning is called Semi-supervised Learning.

When example information is available in one domain and we want to apply the

knowledge to another domain with no available example information, this is called

Transfer Learning;

• obtain training labels for a small number of instances while at the same time optimize

which elements it needs to learn labels for. This is called Active Learning, and, in some

cases, it can be implemented interactively in order to ask a human user for information on

how best to label different elements;

• be asked to find structure in the input without having any labels provided in advance (as

input). This type of learning is called Unsupervised Learning and can be used both for

discovering hidden patterns in the data as well as learning features or parameters from the

data;

be given information not about the structure of the data itself but rather about whether it has

learned something correctly or incorrectly, in the form of rewards and punishments. This is

called Reinforcement Learning and is the type of learning best performed in dynamic

environments such as when driving a vehicle or playing a game against an opponent (Bishop,

2006).

Figure 55.1 summarizes different types of learning and how they relate to their subtasks.

One of the most fruitful areas of machine learning applications in political science relates

to work that treats text as data. Such quantitative text analysis could involve the following tasks:

Assign a category to a group of documents or other elements (‘classification’): this is useful

when, for example, there is a need to understand audience sentiment from social media or

customer reviews or sort party manifestos into predefined categories on the ideological spectrum.

Spam filtering is an example of classification from our contemporary daily life, where the inputs

are email (or other) messages and the classes are ‘spam’ and ‘not spam’. The task involves a

dataset containing text documents with labels, which is then used to train a classifier aiming to

automatically classify the text documents into one or more predefined categories. Inputs are

divided into two or more classes, and the algorithm assigns unseen inputs to one or more (multi-

label classification) of these classes. This is typically tackled via supervised learning. In political

science work, such models have been used, for example, to understand US Supreme Court

decisions (Evans et al., 2007), party affiliation (Yu et al., 2008), and in measuring polarization

(Peterson and Spirling, 2018).

Separate elements into groups (‘clustering’): this is similar to classification, only the groups are

not known beforehand, hence this task usually involves unsupervised learning. Sanders et al.

(2017) and Preoţiuc-Pietro et al. (2017) are examples of the potential use of clustering to better

understand political ideologies and parliamentary topics.

Reduce the complexity of data: dimensionality reduction simplifies inputs by mapping them into

a lower-dimensional space. Principal-components analysis and related methods like

correspondence analysis have been used to analyze preferences for foreign aid (Baker, 2015) and

the ideological mapping of candidates and campaign contributors (Bonica, 2014). Topic

modelling is a related problem, where multiple documents are reduced to a smaller set of

underlying themes or topics. Feature extraction is a type of dimensionality reduction task and can

be accomplished using either semi-supervised or unsupervised learning. Selection and extraction

of text features from documents or words is essential for text mining and information retrieval,

where learning is done by seeking to reduce the dimension of the learning set into a set of

features (Uysal, 2016; Nguyen et al., 2015).

Perform structured predictions: structured prediction or structured (output) learning is an

umbrella term for supervised machine learning techniques that involve predicting structured

objects, rather than scalar discrete or real values (BakIr, 2007). In Lafferty et al. (2001), for

example, the issue of translating a natural-language sentence into a syntactic representation such

as a parse tree can be seen as a structured-prediction problem in which the structured-output

domain is the set of all possible parse trees.

The table below summarizes some of these techniques:

Method Type of learning Examples
Classification Supervised • understand audience sentiment from

social media
• sort party manifestos into predefined

categories on the ideological spectrum
• understand US Supreme Court decisions

(Evans et al., 2007),
• extract party affiliation (Yu et al., 2008),
• measure polarization (Peterson and

Spirling, 2018)
Clustering Unsupervised • understand political ideologies and

parliamentary topics (Sanders et al., 2017;
Preoţiuc-Pietro et al., 2017)

Dimensionality Reduction
e.g. Topic modelling, Feature
Extraction

Semi-supervised
Unsupervised

• preferences for foreign aid (Baker, 2015)
• ideological mapping of candidates and

campaign contributors (Bonica, 2014)
• extraction of text features from

documents (Uysal, 2016; Nguyen et al.,
2015)

Table 55.1Overview of machine learning methods and examples from political science

These political text-as-data applications are related to the broader field of NLP, which is

concerned with the interactions between computers and human or natural languages (rather than

formal languages). After the 1980s and alongside the developments in machine learning and

advances in hardware and technology, NLP has mostly evolved around the use of statistical

models to automatically identify patterns and structures in language, through the analysis of large

sets of annotated texts or corpora. In addition to document classification and dimensionality-

reduction applications in political science, leveraging the latest developments in machine

learning and deep learning methods, the NLP field has made significant progress on several

additional tasks:

• Extracting text from an image. Such a task usually involves a form of Optical Character

Recognition, which can help with determining the corresponding text characters from an

image of printed or handwritten text.

• Identifying boundaries and segment text into smaller units (for example from documents to

characters). Examples of such tasks include morphological segmentation, word segmentation,

and sentence-boundary disambiguation.

Morphological segmentation is the field of separating words into individual morphemes and

identifying the class of the morphemes is an essential step of text pre-processing before

textual data can be used as an input in some machine learning algorithms. Some such tasks

can be quite challenging to perform automatically, sometimes depending on morphological

complexity (i.e. the internal structure of words) of the language being considered.

Word segmentation or tokenization makes possible the separation of continuous text into

separate words.

Sentence-boundary disambiguation helps identify where a sentence starts and where it ends.

This is not as simple as identifying where a period or other punctuation mark is, since not all

punctuation signals the end of a sentence (consider abbreviations, for example) and not all

sentences have punctuation.

Assigning meaning to units. Part-of-speech tagging, involves automatically determining and

assigning a part of speech (e.g., a verb or a noun) to a word is usually the first step to looking at

word context and meaning. Of course many words have more than one meaning or could be

assigned different parts of speech, which can prove challenging for NLP, as it needs to select the

meaning which makes more sense in the current context. With the emergence of deep learning

methods, word embeddings have been used to capture semantic properties of words and their

context (see the next section for a more detailed presentation).

Extracting information from the text and synthesizing it. NLP tasks such as Named Entity

Recognition, Sentiment Analysis, Machine Translation and Automated Text Summarization build

on the above tasks in order to identify and extract specific content from texts and synthesize it to

generate new insights or content.

Machine Translation studies ways to automate the translation between languages. Deep

learning methods are improving the accuracy of algorithms for this task (Nallapati et al.,

2016). This leads to scaling-up opportunities in comparative politics research (de Vries et

al., 2018).

Named Entity Recognition helps determine the elements in a text that are proper names (such

as people or places) and what type of elements they are (for example, person, location,

organization, etc.).

Sentiment Analysis is the automatic extraction of opinions or subjective information from a

set of documents or reviews, to determine ‘polarity’ about specific ideas. For example,

scholars have used Sentiment Analysis to identify trends of public opinion in social media

(Ceron et al., 2014; Proksch et al., 2015).

Automated Text Summarization is a common dimensionality-reduction task in machine

learning and NLP. It involves producing a readable, coherent, and fluent summary of a

longer text, which should include the main points outlined in the document. Extractive

summarization involves techniques such as identifying key words from the source document

and combining them into a continuous text to make a summary. Abstractive summarization

involves automatically paraphrasing or shortening parts of the original text.

With the deep learning methods being extremely data hungry, we believe that a primary area

where the field will benefit from the latest technology is in the text-as-data or broader NLP

domain. In what follows, we outline several deep learning models that have made recent

advances in NLP possible and highlight how they can be used in political science research.

Deep Learning NLP for Political Analysis

Understanding ‘Learning’

To define deep learning and understand the difference between deep learning and other machine

learning approaches, first we need some idea of what machine learning algorithms do. As

mentioned above, the field of machine learning is concerned with the question of how to

construct computer programs that automatically improve with experience.

But what does learning mean in this context?

A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P if its performance at tasks in T, as measured by P,

improves with experience E. (Mitchell, 1997; our emphasis)

This type of learning that particularly pertains to NLP regardless of the type of learning

(supervised, unsupervised, active, etc.) is very much based on a ‘bag-of-words’ approach that

only considers one dimension of the text, without taking onboard any of the contextual

information – a rather ‘shallow’ type of learning.

Deep learning, on the other hand, offers the potential to combine multiple layers of

representation of information, sometimes grouped in a hierarchical way.

Understanding ‘Deep’

Deep learning is a type of machine learning (representation learning) that enables a machine to

automatically learn the patterns needed to perform regression or classification when provided

with raw data. The approach puts an emphasis on learning successive layers of increasingly

meaningful representations. It involves multiple levels of representation. Deng (2014: 199–200)

define deep learning as a class of machine learning algorithms that

use a cascade of multiple layers of nonlinear processing units for feature extraction and

transformation, and each successive layer uses the output from the previous layer as input;

learn in supervised (e.g., classification) and/or unsupervised (e.g., pattern analysis) manners;

learn multiple levels of representations that correspond to different levels of abstraction – the

levels form a hierarchy of concepts.

In deep learning, each level learns to transform its input data into a slightly more abstract

and composite representation. In an image-recognition application, the raw input may be a

matrix of pixels, the first representational layer may abstract the pixels and encode edges, the

second layer may compose and encode the arrangements of edges, the third layer may encode

eyes and a nose, and the fourth layer may recognize that the image contains a face (for more

information about feature visualizations from computer-vision deep neural networks, see Olah et

al., 2017 and Zhang and Zhu, 2018). Importantly, a deep learning process can learn which

features to optimally place in which level on its own. Figure 55.2 shows how a deep learning

hierarchy of complex concepts can be built from simpler concepts.

We will next discuss the application of deep learning algorithms in generating insights

from images and text data.

Working with Image Data

Convolutional neural networks (CNNs) are a category of artificial neural networks that have

proven very effective when trying to classify or detect features in images. CNNs have been very

successful at identifying objects, faces, and traffic signs in images and are currently advancing

computer vision in robotics and self-driving vehicles.

CNNs have been trained on satellite imagery to map and estimate poverty, where data on

economic livelihoods are scarce and where outcomes cannot be studied via other data. Jean et al.

(2016) combine satellite imagery with survey data from five African countries (Nigeria,

Tanzania, Uganda, Malawi, and Rwanda) to train a CNN to identify image features that can

explain up to 75% of the variation in the local-level economic outcomes by estimating

consumption expenditure. Figure 55.3 shows four different convolutional filters used for

extracting these features, which identify (from left to right) features corresponding to urban

areas, non-urban areas, water and roads. Babenko et al. (2017) focus on an urban subsample of

satellite images in Mexico (using images from Digital Globe and Planet) identifying rural and

urban ‘pockets’ of poverty that are inaccessible and changing frequently – areas that are unlikely

to integrate without the support of the necessary policy measures (Figure 55.4).

CNNs have also been used to map informal settlements (‘slums’) in developing countries,

using high- and low-resolution satellite imagery (Helber et al., 2018), to help international aid

organizations to provide effective social and economic aid.

But how do they work?

Analogous to how children learn to recognize a cat from a dog, we need to ‘show’ an

algorithm millions of pictures (‘input’) of a dog before it can reliably make generalizations and

predictions for images it has never seen before. However, machines do not ‘see’ in the same way

we do – their ‘language’ consists of numbers. One way around this is to represent every image as

multi-dimensional arrays of numbers, and CNNs offer a way to move from an image to a set of

vectors.

The main building block of CNN is the convolutional layer, filter, or kernel. Convolution

is a mathematical operation that allows us to condense information by combining two functions

into one. Take the very simple, pixelated representation of a black and white heart in Figure 55.5

element (a) for example. If each cell is a pixel, then we could represent black pixels with value 1

and white pixels with value 0 (see Figure 55.5, element (b)) – this is the ‘input’.

Using a filter, as in Figure 55.5 element (c), with predefined black and white pixels, we can

now perform a convolution and create a ‘feature map’ (Figure 55.6, element (d)) by layering the

filter on top of the input and sliding it for each row. At every step, we perform element-wise

matrix multiplication and sum the result, which goes into the feature map – represented in the

black background in Figure 55.6.

We then slide the filter over the next position and perform the same multiplication (see

Figure 55.7).

We do the same until the ‘input’ is reduced from a 5x5 matrix to a 3x3 feature map.

We repeat until the ‘input’ is reduced from a 5x5 matrix to a 3x3 feature map, as in Figure

55.8 element (c) above. The example above is a two-dimensional convolution using a 3x3 filter –

in reality, these convolutions are performed in three dimensions (width, height, and RGB color

channel) with the filter being 3D as well. Multiple convolutions take place on an input, each

using a different filter with a distinct feature map as the output. After a convolution operation,

we usually perform pooling (usually max pooling, i.e. taking the max value in the pooling

window) to reduce the dimensionality and reduce the number of parameters (see Figure 55.9).

This is crucial when dealing with the volume of data that is fed to the algorithm, as it both

speeds training time and helps avoid overfitting of the algorithm.

CNNs seem to suit the task of image classification, as they can help us predict a

distribution over specific labels (as in Figure 55.10) to indicate confidence of prediction for a

given image. But what about text data?

Working with Text Data

The study of political discourse using text as data has a long tradition in political science.

Political texts have long been used as an important form of social practice that contributes to the

construction of social identities and relations (Fairclough, 1989, 1992; Laclau and Mouffe,

1985). Text as a representation of discourses has been studied systematically to derive

information about actors and combine them with additional resources such as surveys and

observations, as well as knowledge and reflective understanding of the context by scholars, yet

not in a reproducible and quantifiable way (see Blommaert and Bulcaen, 2000, for a review).

Over the past two decades, scholars have sought to extract information such as policy and

ideology positions and gauge citizen political engagement by treating words as data in a more

consistent way. Since some of the earliest implementations of text-scaling methods such as

Wordscores (Laver et al., 2003) and Wordfish (Slapin and Proksch, 2008) to estimate party

positions from texts and the increasing availability of annotated political corpora, the availability

and complexity of quantitative text-analysis methods have increased dramatically (Barberá,

2015; Grimmer and Stewart, 2013; Herzog and Benoit, 2015; Lauderdale and Herzog, 2016).

Most of these methods tend to involve a ‘bag-of-words’ approach to determine relevance and

cluster documents or their parts in groups (see also Laver, 2014). Such approaches assume that

each document can be represented by a multiset (‘bag’) of its words, that ignores word order and

grammar. Word frequencies in the document are then used to classify the document into a

category. Some methods like Wordscores employ a version of the Naive Bayes classifier (Benoit

and Nulty, 2013) in a supervised learning setting by leveraging pre-labelled training data,

whereas others, like WordFish, are based on a Poisson distribution of word frequencies, with

ideological positions estimated using an expectation-maximization algorithm (Proksch and

Slapin, 2009; Slapin and Proksch, 2008).

What these approaches do not capture, though, is the linguistic and semiological context,

i.e. the information provided by the words around the target elements. Such a context would

allow for a better representation of that context and offer a richer understanding of word

relationships in a political text. One way to do that is by using word embeddings, a set of

methods to model language, combining concepts from NLP and graph theory.

Representing Words in Context: Word Embeddings

Word embeddings are a set of language modelling and dimensionality-reduction techniques,

where words or phrases from a document are mapped to vectors or numbers. They usually

involve a mathematical embedding from a space with a single dimension for each word to a

continuous vector space with a reduced dimension. The underlying idea is that ‘[y]ou shall know

a word by the company it keeps’ (Firth, 1957: 11), and it has evolved from ideas in structuralist

linguistics and ordinary language philosophy, as expressed in the work of Zelling Harris, John

Firth, Ludwig Wittgenstein, and vector-space models for information retrieval in the late 1960s

to the 1980s. In the 2000s, Bengio et al. (2006) and Holmes and Jain (2006) provided a series of

papers on the ‘Neural Probabilistic Language Models’ in order to address the issues of

dimensionality of word representations in contexts, by facilitating learning of a ‘distributed

representation of words’. The method developed gradually and really took off after 2010, partly

due to major advances in the quality of vectors and the training speeds of the models.

There are many variations of word-embedding implementations, and many research groups

have created similar but slightly different types of word embeddings that can be used in the deep

learning pipelines. Popular implementations include Google’s Word2Vec (Mikolov et al., 2013),

Stanford University’s GloVe (Pennington et al., 2014), and Facebook’s fastText (Bojanowski et

al., 2016). For a recent discussion of word embeddings in a political science context, see Spirling

and Rodriguez (2019).

Now that we have a mechanism to turn text into dense vectors (very much like we did with

the image of the heart in the previous section), let’s see how CNNs can be applied to NLP tasks

for political texts.

CNNs for Text Analysis

CNNs have recently been applied to various NLP tasks with very good results in accuracy and

precision (Johnson and Zhang, 2014; Kalchbrenner et al., 2014; Kim, 2014).

Instead of image pixels, each row of the matrix corresponds to one token (usually a word,

but it could also be a character; see Jacovi et al., 2018 and Zhang et al., 2015) or rather a vector

that represents a word. These vectors are typically word embeddings such as Word2Vec or

GloVe (see previous section). Kim (2014) describes the general approach of using CNNs for

NLP, assuming a single layer of networks and pretrained static word vectors on very large

corpora (Word2Vec vectors from Google, trained on 100 billion tokens from Google News).

Sentences are mapped to embedding vectors and are available as a matrix input to the model.

Convolutions are performed across the input word-wise using differently sized kernels, such as

two or three words at a time. The resulting feature maps are then processed using a max pooling

layer to condense or summarize the extracted features. Figure 55.11 shows a single-layer CNN

architecture for sentence classification from Kim (2014).

Figure 55.12 shows how a CNN would work for a sentence-classification task adapted

from Zhang and Wallace (2015). Assuming the sentence we wanted to classify was Michelle

Obama’s ‘When they go low, we go high’, this would generate a 7x4 sentence matrix, with three

filter region sizes: 2, 3, and 4, each of which has two filters for each region size. Every filter

performs convolution on the sentence matrix and generates (variable-length) feature maps. Then,

1-max pooling is performed over each map, i.e. the largest number from each feature map is

recorded. Thus, a univariate feature vector is generated from all six maps, and these six features

are concatenated to form a feature vector for the penultimate layer. The final softmax layer then

receives this feature vector as input and uses it to classify the sentence; here, we assume binary

classification and hence depict two possible output states.

Despite CNNs being a little unintuitive in their language implementation, they perform

really well on tasks like text classification. They are very fast, as convolutions are highly

parallelizable, form an integral part of computer graphics, and are implemented on graphical

processing units (GPUs). They also work much better compared to other ‘bag-of-words’

approaches such as n-grams, as they can learn representations automatically without the need to

represent the whole vocabulary (whereas in the case of n-grams, for example, if we had a large

vocabulary, computing anything beyond tri-grams would become quite expensive in terms of

computational power), with architectures as deep as 29 layers performing sufficiently well

(Zhang et al., 2015).

CNNs have been successfully deployed for NLP tasks such as automatic summarization,

fake news detection and text classification. Narayan et al. (2018), for example, apply CNNs to

automatically summarize a real-world, large-scale dataset of online articles from the British

Broadcasting Corporation (BBC). They demonstrate experimentally that this architecture

captures long-range relationships in a document and recognizes related content, outperforming

other state-of-the-art abstractive approaches when evaluated automatically and by humans.

Yamshchikov and Rezagholi (2018) develop a model of binary text classifiers based on

CNNs, which helps them label statements in the political programs of the Democratic and

Republican parties in the United States, whereas Bilbao-Jayo and Almeida (2018) propose a new

approach to automate the analysis of texts in the Manifestos Project, to allow for a quicker and

more streamlined classification of such types of political texts.

The Manifesto Project (Lehmann et al., 2018) includes data on parties’ policy positions,

derived from content analysis of parties’ electoral manifestos. It covers over 1,000 parties from

1945 until today in over 50 countries on five continents. The corpus includes manually annotated

election manifestos using the Manifesto Project coding scheme, which is widely used in

comparative politics research. Bilbao-Jayo and Almeida (2018) use multi-scale CNNs with word

embeddings and two types of context data as extra features, like the previous sentence in the

manifesto and the political party. Their model achieves reasonably high performance of the

classifier across several languages of the Manifesto Project.

Another type of neural network that has shown good performance in NLP tasks are

recurrent neural networks (RNNs) and, in particular, a variation of that algorithm, the long short-

term memory (LSTM) RNNs.

LSTM RNNs for Text Analysis

As you read this paragraph, you understand each word based on your understanding of previous

words – those right before this word, words expressed in the paragraphs and sections above, as

well as words that you might have read in the previous chapters of this Handbook (or even words

that you have read in other books and articles).

Every time we read a new word, we do not forget what we read before – our understanding

has some degree of persistence. Unfortunately, CNNs cannot reason about previous steps in the

learning process to inform later ones. RNNs overcome this issue because they permit loops, thus

allowing for the information in the neural network to persist. A simple RNN is a class of

artificial neural networks where connections between nodes form a directed graph along a

sequence, incorporating previous knowledge (see Figure 55.13, adapted from Olah, 2015).

A sequence of RNN blocks can be regarded as multiple copies of the same network, linked

to one another like a chain, each passing an input to its future self (Figure 55.14). This enables it

to display dynamic temporal behavior for a time sequence and make these networks work really

robustly with sequence data such as text, time-series data, videos, and even DNA sequences.

This suits textual data, which for the most part is sequence or list data, and which has been

applied with success to NLP tasks such as speech recognition, language modelling, translation,

and image captioning (Ba et al., 2014; Gregor et al., 2015). However, simple RNNs are not well

suited for remembering information that is not close to the current node they are in (also called

long-distance dependencies), a problem detailed in Bengio et al. (1994).

LSTM neural networks (Hochreiter and Schmidhuber, 1997) provide a solution to this

issue. LSTMs also have the RNN chain-like structure, but the repeating module has a different

structure. Instead of having a single neural network layer, there are four, all interacting in a

special way. Figure 55.15 shows the repeating module in a standard RNN with a single layer

(A1) and an LSTM with 4 interacting layers (A2). The LSTM has the advantage of incorporating

context from both the input (x) and the previous knowledge (represented with dashed lines in

A2) and also feed the augmented knowledge to the next iteration.

Standard LSTMs (like those in Figure 55.15) are unidirectional – in other words, they

preserve information from the past inputs that have already passed through the different

iterations of the hidden layers of the neural network. Take for example the following word

sequence:

‘Let’s make …’

There are a lot of possibilities for what word sequences could follow. All the sentences

below are possible:

‘Let’s make some cake!’

‘Let’s make fun of Bob!’

‘Let’s make my friend see some sense, because I think she is making a huge mistake!’

What if you knew that the words that followed the first word sequence were actually these?

“Let’s make … great again!”

Now the range of options is narrower, and it is easy to predict that the next word is

probably a noun phrase such as ‘America’ or ‘this business’.

A unidirectional LSTM will only be able to consider past input (‘let’s make’). If you wish

to see the future, you would need to use a bidirectional LSTM, which will run the input in two

ways: one from the past to the future and one from the future to the past. When running

backwards, it preserves information from the future, and by combining this knowledge with the

past, it provides improved and more contextualized predictions.

Both types of LSTMs have been used to detect fake news and propaganda discourse in

traditional and social media text, where the problem of detecting bots – automated social media

accounts governed by software but disguised as human users – has strong societal and political

implications.

Kudugunta and Ferrara (2018) propose a deep neural network based on contextual LSTM

architecture, that exploits both content and metadata to detect bots at the tweet level. Their

proposed technique is based on synthetic minority oversampling to generate a large labelled

dataset suitable for deep nets training, from a minimal amount of labelled data (roughly 3,000

examples of sophisticated Twitter bots). The proposed model can, from the first tweet, achieve

high classification accuracy (> 96%) in separating bots from humans.

Event detection using neural-network algorithms on tweets describing an event is another

area of application of particular interest to media agencies and policy makers. Iyyer et al. (2014)

assume that an individual’s words often reveal their political ideology, and they use RNNs to

identify the political position demonstrated at the sentence level, reporting that their model

outperforms ‘bag of words’ or wordlists models in both the training and a newly annotated

dataset. Makino et al. (2018), for example, propose a method to input and concatenate character

and word sequences in Japanese tweets by using CNNs and reporting an improved accuracy

score, whereas Rao and Spasojevic (2016) apply word embeddings and LSTM to text

classification problems, where the classification criteria are decided by the context of the

application. They show that using LSTMs with word embeddings vastly outperforms traditional

techniques, particularly in the domain of text classification of social media messages’ political

leaning. The research reports an accuracy of classification of 87.57%, something that has been

used in practice to help company agents provide customer support by prioritizing which

messages to respond to.

Other scholars have used hybrid neural-network approaches to work with text, by

combining aspects of the CNN and RNN algorithms. Ajao et al. (2018), for example, propose a

framework that detects and classifies fake news messages from Twitter posts, using such a

hybrid of CNNs and LSTM RNNs, an approach that allows them to identify relevant features

associated with fake news stories without previous knowledge of the domain. Singh et al. (2018)

use a combination of the CNN, LSTM, and bidirectional LSTM to detect (overt and covert)

aggression and hate speech on Facebook and social media comments, where the rise of user-

generated content in social media coupled with almost non-existent moderation in many such

systems has seen aggressive content rise.

Hybrid neural-network approaches also perform well in the task of automatic identification

and verification of political claims. The task assumes that given a debate or political speech, we

can produce a ranked list of all of the sentences based on their worthiness for fact checking –

potential uses of this would be to predict which claims in a debate should be prioritized for fact-

checking. As outlined in Atanasova et al. (2018), of a total of seven models compared, the most

successful approaches used by the participants relied on recurrent and multi-layer neural

networks, as well as combinations of distributional representations, matching claims’ vocabulary

against lexicons, and measures of syntactic dependency.

Working with Multimodal Data

With the resurgence of deep learning for modeling data, the parallel progress in fields of

computer vision and NLP, as well as with the increasing availability of text/image datasets, there

has been a growing interest in using multimodal data that combines text with images. The

popularity of crowd-sourcing tools for generating new, rich datasets combining visual and

language content has been another important factor favoring multimodal input approaches.

Ramisa et al. (2018), for example, have compiled a large-scale dataset of news articles with

rich metadata. The dataset, BreakingNews, consists of approximately 100,000 news articles

collected over 2014, illustrated with one to three images and their corresponding captions. Each

article is enriched with other data like related images from Google Images, tags, shallow and

deep linguistic features (e.g., parts of speech, semantic topics, or outcomes of a sentiment

analyzer), GPS latitude/longitude coordinates, and reader comments. The dataset is an excellent

benchmark for taking joint vision and language developments a step further. Figure 55.16

illustrates the different components of the Ramisa et al. (2018) BreakingNews corpus, which

contains a variety of news-related information for about 100K news articles. The figure shows

two sample images. Such a volume of heterogeneous data makes BreakingNews a good

benchmark for several tasks exploring the relation between text and images.

The paper used CNN for source detection, geolocation prediction, and article illustration,

and a mixed LSTM/CNNs model for caption generation. Overall results were very promising,

especially for the tasks of source detection, article illustration, and geolocation. The automatic

caption-generation task, however, demonstrated sensitivity to loosely related text and images.

Ajao et al. (2018) also fed mixed data inputs (text and images) to CNNs in order to detect

fake news in political-debate speech, and they noted that except for the usual patterns in what

would be considered misinformation, there also exists some hidden patterns in the words and

images that can be captured with a set of latent features extracted via the multiple convolutional

layers in the model. They put forward the TI-CNN (text and image information based

convolutional neural network) model, whereby explicit and latent features can be projected into a

unified feature space, with the TI-CNN able to be trained with both the text and image

information simultaneously.

Recent Developments

Deep neural networks have revolutionized the field of NLP. Furthermore, deep learning in NLP

is undergoing an ‘ImageNet’ moment. In a paradigm shift, instead of using word embeddings as

initializations of the first layer of the networks, we are now moving to pretraining the entire

models that capture hierarchical representations and bring us closer to solving complex

language-understanding tasks. When the ImageNet challenge AlexNet (Krizhevsky et al., 2012)

solution showed a dramatically improved performance of deep learning models compared to

traditional competitors, it arguably spurred the whole deep learning research wave. Over the last

18 months, pretrained language models have blown out of the water previous state-of-the-art

results across many NLP tasks. These advances can be characterized within the broader

framework of transfer learning, where the weights learned in state-of-the-art models can be used

to initialize models for different datasets, and this ‘fine-tuning’ achieves superior performance

even with as little as one positive example per category (Ruder et al., 2019).

One of the assumptions of standard word embeddings like Word2Vec is that the meaning

of the word is relatively stable across sentences. An alternative is to develop contextualized

embeddings as part of the language models. Embeddings from language models (ELMo) (Peters

et al., 2018), universal language model fine-tuning (ULMFiT) (Howard and Ruder, 2018), and

generative pretraining transformer (OpenAI GPT) (Radford et al., 2018) were initial extremely

successful pretrained language models.

More recently GPT2 (Radford et al. 2019) extended the previous GPT model and was used

to generate realistic-sounding artificial text. Bullock and Luengo-Oroz (2019) used the pretrained

GPT2 model to generate fake but natural-sounding speeches in the United Nations General

Debate (see Baturo et al., 2017, for more details about the data and a substantive example).

Bidirectional encoder representations from transformers (BERT) (Devlin et al., 2019) extended

GPT through bi-directional training and dramatically improved performance on various metrics.

While BERT was the reigning champion for several months, it may have recently been overtaken

by XLNet (Yang et al., 2019), which outperforms BERT on about 20 NLP tasks.

In parallel with the advances in transfer learning, we are also further understanding what

we are learning with the deep neural networks. Liu et al. (2019) show that RNNs (and LSTMs in

particular) pick up general linguistic properties, with the lowest layers representing morphology

and being the most transferable between tasks, middle layers representing syntax, and the highest

layers representing task-specific semantics. Large pretrained language models do not exhibit the

same monotonic increase in task specificity, with the middle layers being the most transferrable.

Tenney et al. (2019) focus on BERT and show that the model represents the steps of the

traditional NLP pipeline, with the parts-of-speech tagging followed by parsing, named-entity

recognition, semantic roles, and, finally, coreference. Furthermore, the model adjusts the pipeline

dynamically, taking into account complex interactions between different levels of hierarchical

information.

Detailed discussion of the above models is beyond the scope of this chapter. Instead, we

want to emphasize the pace of development in NLP research, which is leveraging pretrained

language models for downstream tasks. Instead of downloading pretrained word embeddings like

Word2Vec or GloVe as discussed earlier in the chapter, we are now in a position to download

pretrained language models and fine-tune them to a specific task.

Conclusion

It is appealing to think of machine learning algorithms as objective, unbiased actors that are

beyond the influence of human prejudices. It is also appealing to think of empirical research in

political science that utilizes machine learning algorithms as being sufficiently removed from

any potential bias. Unfortunately, this is rarely the case.

Algorithms are designed by humans and learn by observing patterns in the data that very

often represent biased human behavior. It is no surprise that algorithms tend to adopt and, in

some occasions, perpetuate and reinforce the experiences and predispositions of the humans that

have constructed them and those of society as a whole; this is also known as algorithmic bias.

Although machine learning has been transformative in many fields, it has received criticism in

the areas of causal inference, algorithmic bias, and data privacy. This is forming into a distinct

area of social science research, focusing on the lack of (suitable) training data, difficulties of data

access and data sharing, data bias and data provenance, privacy preserving data usage, and

inadequate tasks, tools and evaluation settings (Danks and London, 2017).

The quality of insights delivered by algorithms crucially depends on data quality and data

provenance. In particular, in each case, we need to effectively query very distinct

(heterogeneous) data sources before we can extract and transform them for input into the data

models. Common aspects of data quality that may affect the robustness of insights include

consistency, integrity, accuracy, and completeness. How image or textual data is pre-processed

may affect how data is interpreted and may also lead to biases. For example, dataset biases in

computer vision can lead to feature representation flaws where CNNs, despite high accuracy,

learn from unreliable co-appearing contexts (Zhang et al., 2018).

The consequences of biased algorithms can be quite real and severe. In 2016, an

investigative study by ProPublica (Angwin et al., 2016) provided evidence that a risk-assessment

machine learning algorithm used by US courts wrongly flagged non-white defendants at almost

twice the rate of white defendants. More recently, Wang and Kosinski (2018) showed how deep

neural networks can outperform humans in detecting sexual orientation. Apart from the ethical

issues of the study, the ease of deployment of such ‘AI Gaydar’ raises issues of people’s privacy

and safety.

The issues of algorithmic bias are also highlighted in the Wellcome Trust Report (Matthew

Fenech et al., 2018) with a focus on how AI has been used for health research. The report

identifies, among other ethical, social, and political challenges, issues around implications of

algorithmic transparency and explainability on health, the difference between an algorithmic

decision and a human decision, and what makes algorithms, and the entities that create them,

trustworthy. The report highlights the importance of stakeholders across the public- and private-

sector organizations collaborating in the development of AI technology, and it raises awareness

of the need for AI to be regulated.

Such algorithmic-bias issues may seem to be removed from everyday political science

research. However, various methodological approaches discussed earlier in this chapter are not

bias free. Word embeddings have been shown to carry societal biases that are encoded in human

language (Garg et al., 2018). These range from biased analogies (Bolukbasi et al., 2016; Manzini

et al., 2019; Nissim et al., 2019) to bias in language ID (Blodgett and O’Connor, 2017), natural-

language inference (Rudinger et al., 2017), coreference resolution (Rudinger et al., 2018), and

automated essay scoring (Amorim et al., 2018).

There are corresponding efforts to reduce algorithmic bias in deep neural-network

applications, for example through postprocessing (Bolukbasi et al., 2016) or directly modeling

the problem (Zhao et al., 2018). However, the bias still remains encoded implicitly (Gonen and

Goldberg, 2019), and transparency and awareness about the problem may be better as a research

and deployment strategy (Caliskan et al., 2017; Dwork et al., 2012; Gonen and Goldberg, 2019).

There are legitimate concerns about algorithmic bias and discrimination, algorithmic

accountability and transparency, and general ‘black box’ perception of deep neural-network

models (Knight, 2017; Mayernik, 2017). In order to address these issues, scholars (Fiesler and

Proferes, 2018; Mittelstadt et al., 2016; Olhede and Wolfe, 2018; Prates et al., 2018), AI

technologists, international organizations (European Group on Ethics in Science and New

Technologies (EGE), 2018), and national governments (House of Lords Select Committee, 2018)

have been recently advocating for a more ‘ethical’ and ‘beneficial’ AI that will be programmed

to have humans’ interests at heart and could never hurt anyone.

Kusner et al. (2017), for example, provide an ethical framework for machine decision-

making, whereby a ‘decision is considered fair towards an individual if it is the same in both the

actual world and a “counterfactual” world, where the individual would belong to a different

demographic group’. In addition, it is vital to think about who is being excluded from AI systems

and what is missing from the datasets that drive machine learning algorithms. Often, these blind

spots tend to produce disparate impacts on vulnerable and marginalized groups. This leads to the

invisibility of these communities and their needs because there are not enough feedback loops for

individuals to give their input. While the collection of even more personal data might make

algorithmic models better, it would also increase the threats to privacy.

Russell et al. (2015) present relevant questions to be considered: what are the power

dynamics between different industry and research groups? Will the interests of the research

community change with greater state funding? Will government intervention encourage AI

research to become less transparent and accountable? What organizational principles and

institutional mechanisms exist to best promote beneficial AI? What would international

cooperation look like in the research, regulation, and use of AI? Will transnational efforts to

regulate AI fall to the same collective-action problems that have undermined global efforts to

address climate change?

To ensure that future iterations of the ethical principles are adopted widely around the

world, further research will be needed to investigate long-standing political questions such as

collective action, power, and governance, as well as the global governance of AI, to name a few.

References

Ajao, O., Bhowmik, D. and Zargari, S. (2018) Fake News Identification on Twitter with Hybrid

CNN and RNN Models. In: Proceedings of the 9th International Conference on Social Media and

Society – SMSociety, Copenhagen, Denmark, pp. 226–230. New York: ACM.

Aletras, N., Tsarapatsanis, D., Preoţiuc-Pietro, D. and Lampos, V. (2016) Predicting judicial

decisions of the European Court of Human Rights: A natural language processing perspective.

PeerJ Computer Science 2: e93.

Amorim, E., Cançado, M. and Veloso, A. (2018) Automated Essay Scoring in the Presence of

Biased Ratings. In: Proceedings of the 2018 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long

Papers), New Orleans, United States: Association for Computational Linguistics, pp. 229–237.

Available at: https://doi.org/10.18653/v1/N18-1021 (accessed 17 December 2018).

Angwin, J., Larson, J., Mattu, S. and Kirchner, L. (2016) Machine Bias. ProPublica, 23 May,

2016. Available at: https://www.propublica.org/article/machine-bias-risk-assessments-in-

criminal-sentencing (accessed 17 December 2018).

Atanasova, P., Barron-Cedeno, A., Elsayed, T., Suwaileh, R., Zaghouani, W., Kyuchukov, S., Da

San Martino, G. and Nakov, P. (2018) Overview of the CLEF-2018 CheckThat! Lab on

Automatic Identification and Verification of Political Claims. Task 1: Check-Worthiness.

arXiv:1808.05542 [cs]. Available at: http://arxiv.org/abs/1808.05542 (accessed 19 December

2018).

Ba, J., Mnih, V. and Kavukcuoglu, K. (2014) Multiple Object Recognition with Visual

Attention. arXiv:1412.7755 [cs]. Available at: http://arxiv.org/abs/1412.7755 (accessed 19

December 2018).

Babenko, B., Hersh, J., Newhouse, D., Ramakrishnan, A. and Swartz, T. (2017) Poverty

Mapping Using Convolutional Neural Networks Trained on High and Medium Resolution

Satellite Images, With an Application in Mexico. arXiv:1711.06323 [cs, stat]. Available at:

http://arxiv.org/abs/1711.06323 (accessed 18 December 2018).

Baker, A. (2015) Race, paternalism, and foreign aid: Evidence from US public opinion.

American Political Science Review 109(1): 93–109.

BakIr, G. (ed.) (2007) Predicting Structured Data. Advances in Neural Information Processing

Systems. Cambridge, MA: MIT Press.

Barberá, P. (2015) Birds of the same feather tweet together: Bayesian ideal point estimation

using Twitter data. Political Analysis 23(1): 76–91.

Baturo, A., Dasandi, N. and Mikhaylov, S. J. (2017) Understanding state preferences with text as

data: Introducing the un general debate corpus. Research & Politics 4(2): 1-9. Available at

https://journals.sagepub.com/doi/pdf/10.1177/2053168017712821 (accessed 19 December 2019)

Bengio, Y., Simard, P. and Frasconi, P. (1994) Learning long-term dependencies with gradient

descent is difficult. IEEE Transactions on Neural Networks 5(2): 157–166.

Bengio, Y., Schwenk, H., Senécal, J.-S., Morin, F. and Gauvin, J.-L. (2006) Neural Probabilistic

Language Models. In: Holmes, D. E. and Jain, L. C. (eds), Innovations in machine learning.

Berlin/Heidelberg: Springer-Verlag, pp. 137–186.

Benjamins, V. R., Selic, B, Casanovas, P., Breuker, J. and Gangemi, A. (2005) Law and the

Semantic Web: Legal Ontologies, Methodologies, Legal Information Retrieval, and

Applications. Berlin Heidelberg: Springer.

Benoit, K. and Nulty, P. (2013) Classification methods for scaling latent political traits. In:

Presentation at the Annual Meeting of the Midwest Political Science Association, Chicago,

United States, pp. 11–13.

Bilbao-Jayo, A. and Almeida, A. (2018) Automatic political discourse analysis with multi-scale

convolutional neural networks and contextual data. International Journal of Distributed Sensor

Networks 14(11): 1-11.

Bishop, C. M. (2006) Pattern Recognition and Machine Learning. Information Science and

Statistics. New York: Springer.

Blodgett, S. L. & O’Connor, B. (2017) Racial Disparity in Natural Language Processing: A Case

Study of Social Media African-American English. In: 2017 Workshop on Fairness,

Accountability, and Transparency in Machine Learning, Nova Scotia, Canada. arXiv preprint

arXiv:1707.00061: 1-4.

Blommaert, J. and Bulcaen, C. (2000) Critical discourse analysis. Annual Review of

Anthropology 29, : 447–466.

Bojanowski, P., Grave, E., Joulin, A. and Mikolov, T. (2016) Enriching Word Vectors with

Subword Information. arXiv:1607.04606 [cs]. Available at: http://arxiv.org/abs/1607.04606

(accessed 19 December 2018).

Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V. and Kalai, A. T. 2016. Man is to

Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. In: Lee, D.

D., von Luxburg, R. Garnett, M. Sugiyama, and Guyon, I, (eds). Advances in Neural Information

Processing Systems 29: 30th Annual Conference on Neural Information Processing Systems

2016: Barcelona, Spain, 5-10 December 2016, Red Hook, NY: Curran Associates, Inc.: 4349–

4357.

Bonica, A. (2014) Mapping the ideological marketplace. American Journal of Political Science

58(2): 367–386.

Brynjolfsson, E., Mitchell, T. and Rock, D. (2018) What Can Machines Learn, and What Does It

Mean for Occupations and the Economy? In: AEA Papers and Proceedings, Nashville, TN:

American Economic Association, 108: 43–47.

Bullock, J. and Luengo-Oroz, M. (2019) Automated Speech Generation from UN General

Assembly Statements: Mapping Risks in AI Generated Texts. In: The 2019 International

Conference on Machine Learning AI for Social Good Workshop, Long Beach, United States: 1-

5. Available at http://arxiv.org/abs/1906.01946v1 (accessed 15 October 2019).

Caliskan, A., Bryson, J. J. and Narayanan, A. (2017) Semantics derived automatically from

language corpora contain human-like biases. Science 356(6334): 183–186.

Ceron, A., Curini, L., Iacus, S. M. and Porro, G. (2014) Every tweet counts? How sentiment

analysis of social media can improve our knowledge of citizens’ political preferences with an

application to Italy and France. New Media & Society 16(2): 340–358.

Danks, D. and London, A. J. (2017) Algorithmic bias in autonomous systems. In: Proceedings of

the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17),

Melbourne Australia. Red Hook, NY: Curran Associates, Inc: 4691–4697.

de Vries, E., Schoonvelde, M. and Schumacher, G. (2018) No longer lost in translation:

Evidence that Google Translate works for comparative bag-of-words text applications. Political

Analysis 26(4): 417–430.

Deng, L. (2014) Deep learning: Methods and applications. Foundations and Trends® in Signal

Processing 7(3–4): 197–387.

Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2019) BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. In: Proceedings of the 2019

Conference of the North Americal Chapter of the Association for Computational Linguistics:

Human Language Technologies, Vol 1 (Long and Short papers), Minneapolis, Minnesota:

Association for Computational Linguistics: 4171 – 4186.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O. and Zemel, R. (2012) Fairness through

awareness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,

Cambridge, Massachusetts: ACM. pp. 214–226.

European Commission (2019) A Definition of AI: Main Capabilities and Scientific Disciplines.

High-Level Expert Group on Artificial Intelligence, 8 April. Available at

https://web.archive.org/web/20191014134019/https://ec.europa.eu/digital-single-

market/en/news/definition-artificial-intelligence-main-capabilities-and-scientific-disciplines

(accessed 14 October 2019).

European Group on Ethics in Science and New Technologies (EGE) (2018) Statement on

Artificial Intelligence, Robotics and ‘Autonomous’ Systems. EU report. Available at:

https://web.archive.org/web/20191014135156/http://ec.europa.eu/research/ege/pdf/ege_ai_state

ment_2018.pdf (accessed 14 October 2019).

Evans, M., McIntosh, W., Lin, J. and Cates, C. L. (2007) Recounting the courts? Applying

automated content analysis to enhance empirical legal research. Journal of Empirical Legal

Studies 4(4): 1007–1039.

Fairclough, N. (1989) Language and Power. London; New York: Longman.

Fairclough, N. (1992) Discourse and text: Linguistic and intertextual analysis within discourse

analysis. Discourse & Society 3(2): 193–217.

Fenech, M., Strukelj, N. and Buston, O. (2018) Ethical, Social and Political Challenges of

Artificial Intelligence in Health. London: Wellcome Trust and Future Advocacy. Available at:

https://wellcome.ac.uk/sites/default/files/ai-in-health-ethical-social-political-challenges.pdf

(accessed 21 December 2018).

Fiesler, C. and Proferes, N. (2018) ‘Participant’ Perceptions of Twitter Research Ethics. Social

Media + Society 4(1): 1-14.

Firth, J. (1957) A synopsis of linguistic theory 1930–1955. In: Studies in Linguistic Analysis.

Oxford: Philological Society.

Garg, N., Schiebinger, L., Jurafsky, D. and Zou, J. (2018) Word embeddings quantify 100 years

of gender and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16):

E3635–E3644.

Goldberg, D. E. and Holland, J. H. (1988) Genetic algorithms and machine learning. Machine

Learning 3(2): 95–99.

Gonen, H. and Goldberg, Y. (2019) Lipstick on a pig: Debiasing methods cover up systematic

gender biases in word embeddings but do not remove them. arXiv preprint arXiv:1903.03862.

Goodfellow, I., Bengio, Y. and Courville, A. (2016) Deep Learning. Cambridge, Massachusetts

London, England: MIT Press.

Gregor, K., Danihelka, I., Graves, A., Jimenez Rezende, D. and Wierstra, D. (2015) DRAW: A

Recurrent Neural Network For Image Generation. arXiv:1502.04623 [cs]. Available at:

http://arxiv.org/abs/1502.04623 (accessed 19 December 2018).

Grimmer, J. and Stewart, B. M. (2013) Text as data: The promise and pitfalls of automatic

content analysis methods for political texts. Political Analysis 21(3): 267–297.

Helber, P., Gram-Hansen, B., Varatharajan, I., Azam, F., Coca-Castro, A., Kopackova, V. and

Bilinski, P. (2018) Mapping Informal Settlements in Developing Countries with Multi-

resolution, Multi-spectral Data. arXiv:1812.00812 [cs, stat]. Available at:

http://arxiv.org/abs/1812.00812 (accessed 18 December 2018).

Herzog, A. and Benoit, K. (2015) The most unkindest cuts: Speaker selection and expressed

government dissent during economic crisis. The Journal of Politics 77(4): 1157–1175.

Hochreiter, S. and Schmidhuber, J. (1997) Long short-term memory. Neural Computation 9(8):

1735–80.

Holmes, D. E. and Jain, L. C. (eds) (2006) Innovations in Machine Learning: Theory and

Applications. Studies in Fuzziness and Soft Computing 194. Berlin: Springer.

House of Lords Select Committee (2018) AI in the UK: ready, willing and able? House of Lords

36. Available at: https://publications.parliament.uk/pa/ld201719/ldselect/ldai/100/100.pdf

(accessed 14 October 2019).

Howard, J. and Ruder, S. (2018) Universal Language Model Fine-tuning for Text Classification.

In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics

(Vol. 1: Long Papers), Melbourne, Australia: ACL, pp. 328–339.

Iyyer, M., Enns, P., Boyd-Graber, J. L. and Resnik, P. (2014) Political Ideology Detection Using

Recursive Neural Networks. In: Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics, Baltimore, United States: ACL, pp. 1113–1122.

Jacovi, A., Shalom, O. S. and Goldberg, Y. (2018) Understanding Convolutional Neural

Networks for Text Classification. arXiv:1809.08037 [cs]. Available at:

http://arxiv.org/abs/1809.08037 (accessed 19 December 2018).

Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B. and Ermon, S. (2016) Combining

satellite imagery and machine learning to predict poverty. Science 353(6301): 790–794.

Johnson, R. and Zhang, T. (2014) Effective Use of Word Order for Text Categorization with

Convolutional Neural Networks. arXiv:1412.1058 [cs, stat]. Available at:

http://arxiv.org/abs/1412.1058 (accessed 25 October 2018).

Jordan, M. I. (2019) Artificial intelligence – The revolution hasn’t happened yet. Harvard Data

Science Review (1). Available at https://doi.org/10.1162/99608f92.f06c6e61 (accessed 14

October 2019).

Kalchbrenner, N., Grefenstette, E. and Blunsom, P. (2014) A Convolutional Neural Network for

Modelling Sentences. arXiv:1404.2188 [cs]. Available at: http://arxiv.org/abs/1404.2188

(accessed 25 October 2018).

Kim, Y. (2014) Convolutional Neural Networks for Sentence Classification. arXiv:1408.5882

[cs]. Available at: http://arxiv.org/abs/1408.5882 (accessed 25 October 2018).

Knight, W. (2017, April) The dark secret at the heart of AI: No one really knows how the most

advanced algorithms do what they do-that could be a problem. MIT Technology Review 120(2).

Available at: https://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/

(accessed 14 October 2019).

Krizhevsky, A., Sutskever, I. and. Hinton, G. E. (2012) ImageNet Classification with Deep

Convolutional Neural Networks. In: Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger,

K.Q. (eds). Advances in Neural Information Processing Systems 25: Neural Information

Processing Systems 2012, Red Hook, NY: Curran Associates, Inc, pp. 1097–1105.

Kudugunta, S. and Ferrara, E. (2018) Deep neural networks for bot detection. Information

Sciences 467: 312–322.

Kusner, M. J., Loftus, J. R., Russell, C. and Silva, R. (2017) Counterfactual Fairness.

arXiv:1703.06856 [cs, stat]. Available at: http://arxiv.org/abs/1703.06856 (accessed 18

December 2018).

Laclau, E. and Mouffe, C. (1985) Hegemony and Socialist Strategy: Towards a Radical

Democratic Politics, 1st ed.: Radical Thinkers. London; New York: Verso.

Lafferty, J. D., McCallum, A. and Pereira, F. C. N (2001) Conditional Random Fields:

Probabilistic Models for Segmenting and Labeling Sequence Data. In: Proceedings of the

Eighteenth International Conference on Machine Learning, San Francisco, United States:

Morgan Kaufmann Publishers Inc., pp. 282–289.

Lauderdale, B. E. and Herzog, A. (2016) Measuring political positions from legislative speech.

Political Analysis 24(3): 374–394.

Laver, M. (2014) Measuring policy positions in political space. Annual Review of Political

Science 17(1): 207–223.

Laver, M., Benoit, K. and Garry, J. (2003) Extracting policy positions from political texts using

words as data. American Political Science Review 97(2): 311–331.

Lehmann, P., Werner, K., Lewandowski, J., Matthieß, T., Merz, N., Regel, S. and Werner, A.

(2018) Manifesto Corpus. Version: 2018-01. Berlin: WZB Berlin Social Science Center.

Available at: https://manifesto-project.wzb.eu (accessed 14 October 2019)

Liu, N. F., Gardner, M. Belinkov, Y., Peters, M. and Smith, N. A. (2019) Linguistic Knowledge

and Transferability of Contextual Representations. In: NAACL 2019, Minneapolis, United

States. arXiv preprint arXiv:1903.08855. Available at https://arxiv.org/abs/1903.08855 (accessed

14 October 2019).

Makino, K., Takei, Y., Miyazaki, T. and Goto, J. (2018) Classification of Tweets about Reported

Events using Neural Networks. In: Proceedings of the 2018 EMNLP Workshop W-NUT: The

4th Workshop on Noisy User-generated Text, Brussels, Belgium: Association for Computational

Linguistics, pp. 153–163. Available at: http://aclweb.org/anthology/W18-6121 (accessed 14

October 2019).

Manzini, T., Lim, Y. C., Tsvetkov, Y. and Black, A. W. (2019) Black is to criminal as Caucasian

is to police: Detecting and removing multiclass bias in word embeddings. In: NAACL 2019,

Minneapolis, United States, pp. 1-5. arXiv preprint arXiv:1904.04047. Available at

https://arxiv.org/abs/1904.04047 (accessed 14 October 2019).

Mayernik, M. S. (2017) Open data: Accountability and transparency. Big Data & Society 4(2),

pp. 1-5. Available at https://journals.sagepub.com/doi/pdf/10.1177/2053951717718853 (accessed

14 October 2019).

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. and Dean, J. (2013) Distributed

Representations of Words and Phrases and their Compositionality. arXiv:1310.4546 [cs, stat].

Available at: http://arxiv.org/abs/1310.4546 (accessed 19 December 2018).

Mitchell, T. M. (1997) Machine Learning. New York: McGraw-Hill.

Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S. and Floridi, L. (2016) The ethics of

algorithms: Mapping the debate. Big Data & Society 3(2), pp. 1-21. Available at

https://doi.org/10.1177/2053951716679679 (accessed 14 October 2019).

Nallapati, R., Zhou, B., dos Santos, C. N., Gulcehre, C. and Xiang, B. (2016) Abstractive Text

Summarization Using Sequence-to-Sequence RNNs and Beyond. arXiv:1602.06023 [cs].

Available at: http://arxiv.org/abs/1602.06023 (accessed 25 October 2018).

Narayan, S., Cohen, S. B. and Lapata, M. (2018) Don’t Give Me the Details, Just the Summary!

Topic-Aware Convolutional Neural Networks for Extreme Summarization. arXiv:1808.08745

[cs]. Available at: http://arxiv.org/abs/1808.08745 (accessed 19 December 2018).

Nguyen, V.-A., Boyd-Graber, J., Resnik, P. and Miler, K. (2015) Tea Party in the House: A

Hierarchical Ideal Point Topic Model and its Application to Republican Legislators in the 112th

Congress. In: Proceedings of the 53rd Annual Meeting of the Association for Computational

Linguistics and the 7th International Joint Conference on Natural Language Processing (vol. 1:

Long Papers), Beijing, China: Association for Computational Linguistics, pp. 1438–1448.

Nissim, M., van Noord, R. and van der Goot, R. (2019) Fair is Better than Sensational: Man is to

Doctor as Woman is to Doctor. arXiv preprint arXiv:1905.09866. Available at

https://arxiv.org/abs/1905.09866 (accessed 14 October 2019).

Olah, C. (2015) Understanding LSTM Networks. Available at: http://colah.github.io/posts/2015-

08-Understanding-LSTMs/ (accessed 21 December 2018).

Ohah, C., Mordvintsev, A. and Schubert, L. (2017) Feature Visualization. Distill. Available at

https://distill.pub/2017/feature-visualization (accessed 14 October 2019).

Olhede, S. C. and Wolfe, P. J. (2018) The Growing Ubiquity of Algorithms in Society:

Implications, Impacts and Innovations. In: Philosophical Transactions of the Royal Society,

Series A: Mathematical, Physical, and Engineering Sciences 376(2128), pp. 1 – 16. Available at

https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2017.0364 (accessed 14 October 2019).

Pennington, J., Socher, R. and Manning, C. D. (2014) Glove: Global Vectors for Word

Representation. In: EMNLP, Doha, Qatar.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K. and Zettlemoyer, L.

(2018). Deep Contextualized Word Representations. In: NAACL, New Orleans, United States.

Peterson, A. and Spirling, A. (2018) Classification accuracy as a substantive quantity of interest:

Measuring polarization in Westminster systems. Political Analysis 26(1): 120–128.

Prates, M., Avelar, P. and Lamb, L. C. (2018) On Quantifying and Understanding the Role of

Ethics in AI Research: A Historical Account of Flagship Conferences and Journals.

arXiv:1809.08328 [cs]: 188–173. DOI: 10.29007/74gj.

Preoţiuc-Pietro, D., Liu, Y., Hopkins, D. and Ungar, L. (2017) Beyond Binary Labels: Political

Ideology Prediction of Twitter Users. In: Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics (vol. 1: Long Papers), Vancouver, Canada, pp. 729–

740.

Proksch, S.-O. and Slapin, J. B. (2009) How to avoid pitfalls in statistical analysis of political

texts: The case of Germany. German Politics 18(3): 323–344.

Proksch, S.-O., Lowe, W. and Soroka, S. (2015) Multilingual sentiment analysis: A new

approach to measuring conflict in parliamentary speeches. Legislative Studies Quarterly 44(1):

97–131.

Radford, A., Narasimhan, K., Salimans, T. and Sutskever, I. (2018) Improving language

understanding by generative pre-training. OpenAI.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. and Sutskever, I. (2019) Language models

are unsupervised multitask learners. OpenAI Blog 1(8).

Ramisa, A., Yan, F., Moreno-Noguer, F. and Mikolajczyk, K. (2018) BreakingNews: Article

annotation by image and text processing. IEEE Transactions on Pattern Analysis and Machine

Intelligence 40(5): 1072–1085.

Rao, A. and Spasojevic, N. (2016) Actionable and Political Text Classification using Word

Embeddings and LSTM. Available at: https://arxiv.org/abs/1607.02501 (accessed 29 November

2018).

Ruder, S., Peters, M., Swayamdipta, S. and Wolf T. (2019) Transfer Learning in Natural

Language Processing. In: Proceedings of the 2019 Conference of the North American Chapter of

the Association for Computational Linguistics, pp. 15–18.

Rudinger, R., May, C. and Van Durme, B. (2017) Social Bias in Elicited Natural Language

Inferences. In: Proceedings of the First ACL Workshop on Ethics in Natural Language

Processing, pp. 74–79.

Rudinger, R., Naradowsky, J., Leonard, B. and Van Durme, B. (2018) Gender Bias in

Coreference Resolution. arXiv preprint arXiv:1804.09301.

Russell, S., Dewey, D. and Tegmark, M. (2015) Research priorities for robust and beneficial

artificial intelligence. AI Magazine 36(4): 105–114.

Samothrakis, S. (2018) Viewpoint: Artificial Intelligence and Labour. arXiv:1803.06563 [cs].

Available at: https://www.ijcai.org/proceedings/2018/0803.pdf (accessed 12 December 2018).

Samuel, A. L. (1959) Some studies in machine learning using the game of checkers. IBM Journal

of Research and Development 3(3): 210–229.

Sanders, J., Lisi, G. and Schonhardt-Bailey, C. (2017) Themes and topics in parliamentary

oversight hearings: a new direction in textual data analysis. Statistics, Politics and Policy 8(2):

153–194.

Schlogl, L. and Sumner, A. (2018) The Rise of the Robot Reserve Army: Automation and the

Future of Economic Development, Work, and Wages in Developing Countries. ID 3208816,

SSRN Scholarly Paper, 2 July. Rochester, NY: Social Science Research Network. Available at:

https://papers.ssrn.com/abstract=3208816 (accessed 19 December 2018).

Singh, V., Varshney, A., Akhtar, S. S. Vijay, D. and Shrivastava, M. (2018) Aggression

Detection on Social Media Text Using Deep Neural Networks. In: Proceedings of the 2nd

Workshop on Abusive Language Online (ALW2), Brussels, Belgium, pp. 43–50. Association for

Computational Linguistics. Available at: http://aclweb.org/anthology/W18-5106.

Slapin, J. B. and Proksch, S.-O. (2008) A scaling model for estimating time-series party positions

from texts. American Journal of Political Science 52(3): 705–722.

Spirling, A. and Rodriguez, P. L. (2019) Word Embeddings: What Works, What Doesn’t, and

How to Tell the Difference for Applied Research. NYU manuscript.

https://github.com/ArthurSpirling/EmbeddingsPaper

Tenney, I., Das, D. and Pavlick, E. (2019) BERT Rediscovers the Classical NLP Pipeline. ACL

2019.

Uysal, A. K. (2016) An improved global feature selection scheme for text classification. Expert

Systems with Applications 43: 82–92.

Wang, Y. and Kosinski, M. (2018) Deep neural networks are more accurate than humans at

detecting sexual orientation from facial images. Journal of Personality and Social Psychology,

114(2): 246.

Yamshchikov, I. P. and Rezagholi, S. (2018) Elephants, Donkeys, and Colonel Blotto. In:

Proceedings of the 3rd International Conference on Complexity, Future Information Systems and

Risk, pp. 113–119.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. and Le, Q. V. (2019) XLNet:

Generalized Autoregressive Pretraining for Language Understanding. arXiv 1906.08237.

Yu, B., Kaufmann, S. and Diermeier, D. (2008) Classifying party affiliation from political

speech. Journal of Information Technology & Politics 5(1): 33–48.

Zhang, X., Zhao, J. and LeCun, Y. (2015) Character-level Convolutional Networks for Text

Classification. arXiv:1509.01626 [cs]. Available at: http://arxiv.org/abs/1509.01626 (accessed 25

October 2018).

Zhang, Y. and Wallace, B. (2015) A Sensitivity Analysis of (and Practitioners’ Guide to)

Convolutional Neural Networks for Sentence Classification. Available at:

https://arxiv.org/abs/1510.03820 (accessed 25 October 2018).

Zhang, Q. and Zhu, S. (2018) Visual interpretability for deep learning: A survey. Frontiers of

Information Technology and Electronic Engineering 19(1): 27–39.

Zhang, Q., Wang, W. and Zhu, S. C. (2018) Examining CNN Representations with Respect to

Dataset Bias. In: 32nd AAAI Conference on Artificial Intelligence.

Zhao, J., Zhou, Y. Li, Z., Wang, W. and Chang, K.-W. 2018. Learning Gender-Neutral Word

Embeddings. In: Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing, Brussels, Belgium, pp. 4847–4853, Association for Computational

Linguistics.

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2020. All

rights reserved. Draft of December 30, 2020.

CHAPTER

6 Vector Semantics and
Embeddings
荃者所以在鱼，得鱼而忘荃 Nets are for fish;

Once you get the fish, you can forget the net.
言者所以在意，得意而忘言 Words are for meaning;

Once you get the meaning, you can forget the words
庄子(Zhuangzi), Chapter 26

The asphalt that Los Angeles is famous for occurs mainly on its freeways. But
in the middle of the city is another patch of asphalt, the La Brea tar pits, and this
asphalt preserves millions of fossil bones from the last of the Ice Ages of the Pleis-
tocene Epoch. One of these fossils is the Smilodon, or saber-toothed tiger, instantly
recognizable by its long canines. Five million years ago or so, a completely different
sabre-tooth tiger called Thylacosmilus lived
in Argentina and other parts of South Amer-
ica. Thylacosmilus was a marsupial whereas
Smilodon was a placental mammal, but Thy-
lacosmilus had the same long upper canines
and, like Smilodon, had a protective bone
flange on the lower jaw. The similarity of
these two mammals is one of many examples
of parallel or convergent evolution, in which particular contexts or environments
lead to the evolution of very similar structures in different species (Gould, 1980).

The role of context is also important in the similarity of a less biological kind
of organism: the word. Words that occur in similar contexts tend to have similar
meanings. This link between similarity in how words are distributed and similarity
in what they mean is called the distributional hypothesis. The hypothesis wasdistributional

hypothesis
first formulated in the 1950s by linguists like Joos (1950), Harris (1954), and Firth
(1957), who noticed that words which are synonyms (like oculist and eye-doctor)
tended to occur in the same environment (e.g., near words like eye or examined)
with the amount of meaning difference between two words “corresponding roughly
to the amount of difference in their environments” (Harris, 1954, 157).

In this chapter we introduce vector semantics, which instantiates this linguisticvector
semantics

hypothesis by learning representations of the meaning of words, called embeddings,embeddings

directly from their distributions in texts. These representations are used in every nat-
ural language processing application that makes use of meaning, and the static em-
beddings we introduce here underlie the more powerful dynamic or contextualized
embeddings like BERT that we will see in Chapter 10.

These word representations are also the first example in this book of repre-
sentation learning, automatically learning useful representations of the input text.representation

learning
Finding such self-supervised ways to learn representations of the input, instead of
creating representations by hand via feature engineering, is an important focus of
NLP research (Bengio et al., 2013).

2 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

6.1 Lexical Semantics

Let’s begin by introducing some basic principles of word meaning. How should we
represent the meaning of a word? In the n-gram models of Chapter 3, and in classical
NLP applications, our only representation of a word is as a string of letters, or an
index in a vocabulary list. This representation is not that different from a tradition
in philosophy, perhaps you’ve seen it in introductory logic classes, in which the
meaning of words is represented by just spelling the word with small capital letters;
representing the meaning of “dog” as DOG, and “cat” as CAT.

Representing the meaning of a word by capitalizing it is a pretty unsatisfactory
model. You might have seen a joke due originally to semanticist Barbara Partee
(Carlson, 1977):

Q: What’s the meaning of life?
A: LIFE’

Surely we can do better than this! After all, we’ll want a model of word meaning
to do all sorts of things for us. It should tell us that some words have similar mean-
ings (cat is similar to dog), others are antonyms (cold is the opposite of hot), some
have positive connotations (happy) while others have negative connotations (sad).
It should represent the fact that the meanings of buy, sell, and pay offer differing
perspectives on the same underlying purchasing event (If I buy something from you,
you’ve probably sold it to me, and I likely paid you). More generally, a model of
word meaning should allow us to draw inferences to address meaning-related tasks
like question-answering or dialogue.

In this section we summarize some of these desiderata, drawing on results in the
linguistic study of word meaning, which is called lexical semantics; we’ll return tolexical

semantics
and expand on this list in Chapter 18 and Chapter 10.

Lemmas and Senses Let’s start by looking at how one word (we’ll choose mouse)
might be defined in a dictionary (simplified from the online dictionary WordNet):
mouse (N)

1. any of numerous small rodents...

2. a hand-operated device that controls a cursor...

Here the form mouse is the lemma, also called the citation form. The formlemma

citation form mouse would also be the lemma for the word mice; dictionaries don’t have separate
definitions for inflected forms like mice. Similarly sing is the lemma for sing, sang,
sung. In many languages the infinitive form is used as the lemma for the verb, so
Spanish dormir “to sleep” is the lemma for duermes “you sleep”. The specific forms
sung or carpets or sing or duermes are called wordforms.wordform

As the example above shows, each lemma can have multiple meanings; the
lemma mouse can refer to the rodent or the cursor control device. We call each
of these aspects of the meaning of mouse a word sense. The fact that lemmas can
be polysemous (have multiple senses) can make interpretation difficult (is someone
who types “mouse info” into a search engine looking for a pet or a tool?). Chapter 18
will discuss the problem of polysemy, and introduce word sense disambiguation,
the task of determining which sense of a word is being used in a particular context.

Synonymy One important component of word meaning is the relationship be-
tween word senses. For example when one word has a sense whose meaning is
identical to a sense of another word, or nearly identical, we say the two senses of
those two words are synonyms. Synonyms include such pairs assynonym

6.1 • LEXICAL SEMANTICS 3

couch/sofa vomit/throw up filbert/hazelnut car/automobile

A more formal definition of synonymy (between words rather than senses) is that
two words are synonymous if they are substitutable for one another in any sentence
without changing the truth conditions of the sentence, the situations in which the
sentence would be true. We often say in this case that the two words have the same
propositional meaning.propositional

meaning
While substitutions between some pairs of words like car / automobile or wa-

ter / H2O are truth preserving, the words are still not identical in meaning. Indeed,
probably no two words are absolutely identical in meaning. One of the fundamen-
tal tenets of semantics, called the principle of contrast (Girard 1718, Bréal 1897,principle of

contrast
Clark 1987), states that a difference in linguistic form is always associated with some
difference in meaning. For example, the word H2O is used in scientific contexts and
would be inappropriate in a hiking guide—water would be more appropriate— and
this genre difference is part of the meaning of the word. In practice, the word syn-
onym is therefore used to describe a relationship of approximate or rough synonymy.

Word Similarity While words don’t have many synonyms, most words do have
lots of similar words. Cat is not a synonym of dog, but cats and dogs are certainly
similar words. In moving from synonymy to similarity, it will be useful to shift from
talking about relations between word senses (like synonymy) to relations between
words (like similarity). Dealing with words avoids having to commit to a particular
representation of word senses, which will turn out to simplify our task.

The notion of word similarity is very useful in larger semantic tasks. Know-similarity

ing how similar two words are can help in computing how similar the meaning of
two phrases or sentences are, a very important component of natural language un-
derstanding tasks like question answering, paraphrasing, and summarization. One
way of getting values for word similarity is to ask humans to judge how similar one
word is to another. A number of datasets have resulted from such experiments. For
example the SimLex-999 dataset (Hill et al., 2015) gives values on a scale from 0 to
10, like the examples below, which range from near-synonyms (vanish, disappear)
to pairs that scarcely seem to have anything in common (hole, agreement):

vanish disappear 9.8
belief impression 5.95
muscle bone 3.65
modest flexible 0.98
hole agreement 0.3

Word Relatedness The meaning of two words can be related in ways other than
similarity. One such class of connections is called word relatedness (Budanitskyrelatedness

and Hirst, 2006), also traditionally called word association in psychology.association

Consider the meanings of the words coffee and cup. Coffee is not similar to cup;
they share practically no features (coffee is a plant or a beverage, while a cup is a
manufactured object with a particular shape). But coffee and cup are clearly related;
they are associated by co-participating in an everyday event (the event of drinking
coffee out of a cup). Similarly scalpel and surgeon are not similar but are related
eventively (a surgeon tends to make use of a scalpel).

One common kind of relatedness between words is if they belong to the same
semantic field. A semantic field is a set of words which cover a particular semanticsemantic field

domain and bear structured relations with each other. For example, words might be
related by being in the semantic field of hospitals (surgeon, scalpel, nurse, anes-
thetic, hospital), restaurants (waiter, menu, plate, food, chef), or houses (door, roof,

4 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

kitchen, family, bed). Semantic fields are also related to topic models, like Latenttopic models

Dirichlet Allocation, LDA, which apply unsupervised learning on large sets of texts
to induce sets of associated words from text. Semantic fields and topic models are
very useful tools for discovering topical structure in documents.

In Chapter 18 we’ll introduce more relations between senses like hypernymy or
IS-A, antonymy (opposites) and meronymy (part-whole relations).

Semantic Frames and Roles Closely related to semantic fields is the idea of a
semantic frame. A semantic frame is a set of words that denote perspectives orsemantic frame

participants in a particular type of event. A commercial transaction, for example,
is a kind of event in which one entity trades money to another entity in return for
some good or service, after which the good changes hands or perhaps the service is
performed. This event can be encoded lexically by using verbs like buy (the event
from the perspective of the buyer), sell (from the perspective of the seller), pay
(focusing on the monetary aspect), or nouns like buyer. Frames have semantic roles
(like buyer, seller, goods, money), and words in a sentence can take on these roles.

Knowing that buy and sell have this relation makes it possible for a system to
know that a sentence like Sam bought the book from Ling could be paraphrased as
Ling sold the book to Sam, and that Sam has the role of the buyer in the frame and
Ling the seller. Being able to recognize such paraphrases is important for question
answering, and can help in shifting perspective for machine translation.

Connotation Finally, words have affective meanings or connotations. The wordconnotations

connotation has different meanings in different fields, but here we use it to mean
the aspects of a word’s meaning that are related to a writer or reader’s emotions,
sentiment, opinions, or evaluations. For example some words have positive conno-
tations (happy) while others have negative connotations (sad). Even words whose
meanings are similar in other ways can vary in connotation; consider the difference
in connotations between fake, knockoff, forgery, on the one hand, and copy, replica,
reproduction on the other, or innocent (positive connotation) and naive (negative
connotation). Some words describe positive evaluation (great, love) and others neg-
ative evaluation (terrible, hate). Positive or negative evaluation language is called
sentiment, as we saw in Chapter 4, and word sentiment plays a role in importantsentiment

tasks like sentiment analysis, stance detection, and applications of NLP to the lan-
guage of politics and consumer reviews.

Early work on affective meaning (Osgood et al., 1957) found that words varied
along three important dimensions of affective meaning:

valence: the pleasantness of the stimulus
arousal: the intensity of emotion provoked by the stimulus
dominance: the degree of control exerted by the stimulus

Thus words like happy or satisfied are high on valence, while unhappy or an-
noyed are low on valence. Excited is high on arousal, while calm is low on arousal.
Controlling is high on dominance, while awed or influenced are low on dominance.
Each word is thus represented by three numbers, corresponding to its value on each
of the three dimensions:

Valence Arousal Dominance
courageous 8.05 5.5 7.38
music 7.67 5.57 6.5
heartbreak 2.45 5.65 3.58
cub 6.71 3.95 4.24

6.2 • VECTOR SEMANTICS 5

Osgood et al. (1957) noticed that in using these 3 numbers to represent the
meaning of a word, the model was representing each word as a point in a three-
dimensional space, a vector whose three dimensions corresponded to the word’s
rating on the three scales. This revolutionary idea that word meaning could be rep-
resented as a point in space (e.g., that part of the meaning of heartbreak can be
represented as the point [2.45,5.65,3.58]) was the first expression of the vector se-
mantics models that we introduce next.

6.2 Vector Semantics

Vectors semantics is the standard way to represent word meaning in NLP, helpingvector
semantics

us model many of the aspects of word meaning we saw in the previous section. The
roots of the model lie in the 1950s when two big ideas converged: Osgood’s (1957)
idea mentioned above to use a point in three-dimensional space to represent the
connotation of a word, and the proposal by linguists like Joos (1950), Harris (1954),
and Firth (1957) to define the meaning of a word by its distribution in language
use, meaning its neighboring words or grammatical environments. Their idea was
that two words that occur in very similar distributions (whose neighboring words are
similar) have similar meanings.

For example, suppose you didn’t know the meaning of the word ongchoi (a re-
cent borrowing from Cantonese) but you see it in the following contexts:

(6.1) Ongchoi is delicious sauteed with garlic.
(6.2) Ongchoi is superb over rice.
(6.3) ...ongchoi leaves with salty sauces...

And suppose that you had seen many of these context words in other contexts:

(6.4) ...spinach sauteed with garlic over rice...
(6.5) ...chard stems and leaves are delicious...
(6.6) ...collard greens and other salty leafy greens

The fact that ongchoi occurs with words like rice and garlic and delicious and
salty, as do words like spinach, chard, and collard greens might suggest that ongchoi
is a leafy green similar to these other leafy greens.1 We can do the same thing
computationally by just counting words in the context of ongchoi.

The idea of vector semantics is to represent a word as a point in a multidimen-
sional semantic space that is derived (in ways we’ll see) from the distributions of
word neighbors. Vectors for representing words are called embeddings (althoughembeddings

the term is sometimes more strictly applied only to dense vectors like word2vec
(Section 6.8), rather than sparse tf-idf or PPMI vectors (Section 6.3-Section 6.6)).
The word “embedding” derives from its mathematical sense as a mapping from one
space or structure to another, although the meaning has shifted; see the end of the
chapter.

Fig. 6.1 shows a visualization of embeddings learned for sentiment analysis,
showing the location of selected words projected down from 60-dimensional space
into a two dimensional space. Notice the distinct regions containing positive words,
negative words, and neutral function words.

1 It’s in fact Ipomoea aquatica, a relative of morning glory sometimes called water spinach in English.

6 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

good
nice

bad
worst

not good

wonderful
amazing

terrific

dislike

worse

very good incredibly good
fantastic

incredibly badnow

youi
that

with

byto
’s

are

is

a
than

Figure 6.1 A two-dimensional (t-SNE) projection of embeddings for some words and
phrases, showing that words with similar meanings are nearby in space. The original 60-
dimensional embeddings were trained for sentiment analysis. Simplified from Li et al. (2015)
with colors added for explanation.

The fine-grained model of word similarity of vector semantics offers enormous
power to NLP applications. NLP applications like the sentiment classifiers of Chap-
ter 4 or Chapter 5 depend on the same words appearing in the training and test sets.
But by representing words as embeddings, classifiers can assign sentiment as long as
it sees some words with similar meanings. And as we’ll see, vector semantic models
can be learned automatically from text without supervision.

In this chapter we’ll introduce the two most commonly used models. In the tf-idf
model, an important baseline, the meaning of a word is defined by a simple function
of the counts of nearby words. We will see that this method results in very long
vectors that are sparse, i.e. mostly zeros (since most words simply never occur in
the context of others). We’ll introduce the word2vec model family for construct-
ing short, dense vectors that have useful semantic properties. We’ll also introduce
the cosine, the standard way to use embeddings to compute semantic similarity, be-
tween two words, two sentences, or two documents, an important tool in practical
applications like question answering, summarization, or automatic essay grading.

6.3 Words and Vectors

“The most important attributes of a vector in 3-space are {Location, Location, Location}”
Randall Munroe, https://xkcd.com/2358/

Vector or distributional models of meaning are generally based on a co-occurrence
matrix, a way of representing how often words co-occur. We’ll look at two popular
matrices: the term-document matrix and the term-term matrix.

6.3.1 Vectors and documents
In a term-document matrix, each row represents a word in the vocabulary and eachterm-document

matrix
column represents a document from some collection of documents. Fig. 6.2 shows a
small selection from a term-document matrix showing the occurrence of four words
in four plays by Shakespeare. Each cell in this matrix represents the number of times
a particular word (defined by the row) occurs in a particular document (defined by
the column). Thus fool appeared 58 times in Twelfth Night.

The term-document matrix of Fig. 6.2 was first defined as part of the vector
space model of information retrieval (Salton, 1971). In this model, a document isvector space

model

https://xkcd.com/2358/

6.3 • WORDS AND VECTORS 7

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

represented as a count vector, a column in Fig. 6.3.
To review some basic linear algebra, a vector is, at heart, just a list or array ofvector

numbers. So As You Like It is represented as the list [1,114,36,20] (the first column
vector in Fig. 6.3) and Julius Caesar is represented as the list [7,62,1,2] (the third
column vector). A vector space is a collection of vectors, characterized by theirvector space

dimension. In the example in Fig. 6.3, the document vectors are of dimension 4,dimension

just so they fit on the page; in real term-document matrices, the vectors representing
each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space indicates different meaningful di-
mensions on which documents vary. Thus the first dimension for both these vectors
corresponds to the number of times the word battle occurs, and we can compare
each dimension, noting for example that the vectors for As You Like It and Twelfth
Night have similar values (1 and 0, respectively) for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as a point in |V |-dimensional space;
thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-dimensional
spaces are hard to visualize, Fig. 6.4 shows a visualization in two dimensions; we’ve
arbitrarily chosen the dimensions corresponding to the words battle and fool.

5 10 15 20 25 30

5

10

Henry V [4,13]

As You Like It [36,1]

Julius Caesar [1,7]ba
ttl

e

 fool

Twelfth Night [58,0]

15

40

35 40 45 50 55 60

Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are

8 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

similar will tend to have similar words, and if two documents have similar words
their column vectors will tend to be similar. The vectors for the comedies As You
Like It [1,114,36,20] and Twelfth Night [0,80,58,15] look a lot more like each other
(more fools and wit than battles) than they look like Julius Caesar [7,62,1,2] or
Henry V [13,89,4,3]. This is clear with the raw numbers; in the first dimension
(battle) the comedies have low numbers and the others have high numbers, and we
can see it visually in Fig. 6.4; we’ll see very shortly how to quantify this intuition
more formally.

A real term-document matrix, of course, wouldn’t just have 4 rows and columns,
let alone 2. More generally, the term-document matrix has |V | rows (one for each
word type in the vocabulary) and D columns (one for each document in the collec-
tion); as we’ll see, vocabulary sizes are generally in the tens of thousands, and the
number of documents can be enormous (think about all the pages on the web).

Information retrieval (IR) is the task of finding the document d from the Dinformation
retrieval

documents in some collection that best matches a query q. For IR we’ll therefore also
represent a query by a vector, also of length |V |, and we’ll need a way to compare
two vectors to find how similar they are. (Doing IR will also require efficient ways
to store and manipulate these vectors by making use of the convenient fact that these
vectors are sparse, i.e., mostly zeros).

Later in the chapter we’ll introduce some of the components of this vector com-
parison process: the tf-idf term weighting, and the cosine similarity metric.

6.3.2 Words as vectors: document dimensions
We’ve seen that documents can be represented as vectors in a vector space. But
vector semantics can also be used to represent the meaning of words. We do this
by associating each word with a word vector— a row vector rather than a columnrow vector

vector, hence with different dimensions, as shown in Fig. 6.5. The four dimensions
of the vector for fool, [36,58,1,4], correspond to the four Shakespeare plays. Word
counts in the same four dimensions are used to form the vectors for the other 3
words: wit, [20,15,2,3]; battle, [1,0,7,13]; and good [114,80,62,89].

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.5 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each word is represented as a row vector of length four.

For documents, we saw that similar documents had similar vectors, because sim-
ilar documents tend to have similar words. This same principle applies to words:
similar words have similar vectors because they tend to occur in similar documents.
The term-document matrix thus lets us represent the meaning of a word by the doc-
uments it tends to occur in.

6.3.3 Words as vectors: word dimensions
An alternative to using the term-document matrix to represent words as vectors of
document counts, is to use the term-term matrix, also called the word-word ma-
trix or the term-context matrix, in which the columns are labeled by words ratherword-word

matrix
than documents. This matrix is thus of dimensionality |V |×|V | and each cell records

6.3 • WORDS AND VECTORS 9

the number of times the row (target) word and the column (context) word co-occur
in some context in some training corpus. The context could be the document, in
which case the cell represents the number of times the two words appear in the same
document. It is most common, however, to use smaller contexts, generally a win-
dow around the word, for example of 4 words to the left and 4 words to the right,
in which case the cell represents the number of times (in some training corpus) the
column word occurs in such a ±4 word window around the row word. For example
here is one example each of some words in their windows:

is traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually
a computer. This includes information available on the internet

If we then take every occurrence of each word (say strawberry) and count the
context words around it, we get a word-word co-occurrence matrix. Fig. 6.6 shows a
simplified subset of the word-word co-occurrence matrix for these four words com-
puted from the Wikipedia corpus (Davies, 2015).

aardvark ... computer data result pie sugar ...
cherry 0 ... 2 8 9 442 25 ...

strawberry 0 ... 0 0 1 60 19 ...
digital 0 ... 1670 1683 85 5 4 ...

information 0 ... 3325 3982 378 5 13 ...
Figure 6.6 Co-occurrence vectors for four words in the Wikipedia corpus, showing six of
the dimensions (hand-picked for pedagogical purposes). The vector for digital is outlined in
red. Note that a real vector would have vastly more dimensions and thus be much sparser.

Note in Fig. 6.6 that the two words cherry and strawberry are more similar to
each other (both pie and sugar tend to occur in their window) than they are to other
words like digital; conversely, digital and information are more similar to each other
than, say, to strawberry. Fig. 6.7 shows a spatial visualization.

1000 2000 3000 4000

1000

2000
digital

 [1683,1670]

co
m

pu
te

r

 data

information
 [3982,3325] 3000

4000

Figure 6.7 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and computer.

Note that |V |, the length of the vector, is generally the size of the vocabulary, of-
ten between 10,000 and 50,000 words (using the most frequent words in the training
corpus; keeping words after about the most frequent 50,000 or so is generally not
helpful). Since most of these numbers are zero these are sparse vector representa-
tions; there are efficient algorithms for storing and computing with sparse matrices.

Now that we have some intuitions, let’s move on to examine the details of com-
puting word similarity. Afterwards we’ll discuss methods for weighting cells.

10 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

6.4 Cosine for measuring similarity

To measure similarity between two target words v and w, we need a metric that
takes two vectors (of the same dimensionality, either both with words as dimensions,
hence of length |V |, or both with documents as dimensions as documents, of length
|D|) and gives a measure of their similarity. By far the most common similarity
metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot product(v,w) = v ·w =

N∑
i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|v| =

√√√√ N∑
i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

We modify the dot product to normalize for the vector length by dividing the
dot product by the lengths of each of the two vectors. This normalized dot product
turns out to be the same as the cosine of the angle between the two vectors, following
from the definition of the dot product between two vectors a and b:

a ·b = |a||b|cosθ

a ·b
|a||b|

= cosθ (6.9)

The cosine similarity metric between two vectors v and w thus can be computed as:cosine

cosine(v,w) =
v ·w
|v||w|

=

N∑
i=1

viwi√√√√ N∑
i=1

v2
i

√√√√ N∑
i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector

dividing it by |a|. For unit vectors, the dot product is the same as the cosine.

6.5 • TF-IDF: WEIGHING TERMS IN THE VECTOR 11

The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for orthogonal vectors, to -1 for vectors pointing in opposite directions. But since
raw frequency values are non-negative, the cosine for these vectors ranges from 0–1.

Let’s see how the cosine computes which of the words cherry or digital is closer
in meaning to information, just using raw counts from the following shortened table:

pie data computer
cherry 442 8 2
digital 5 1683 1670

information 5 3982 3325

cos(cherry, information) =
442∗5+8∗3982+2∗3325√

4422 +82 +22
√

52 +39822 +33252
= .017

cos(digital, information) =
5∗5+1683∗3982+1670∗3325√

52 +16832 +16702
√

52 +39822 +33252
= .996

The model decides that information is way closer to digital than it is to cherry, a
result that seems sensible. Fig. 6.8 shows a visualization.

500 1000 1500 2000 2500 3000

500

digital
cherry

information

D
im

en
si

on
 1

: ‘
pi

e’

Dimension 2: ‘computer’

Figure 6.8 A (rough) graphical demonstration of cosine similarity, showing vectors for
three words (cherry, digital, and information) in the two dimensional space defined by counts
of the words computer and pie nearby. Note that the angle between digital and information is
smaller than the angle between cherry and information. When two vectors are more similar,
the cosine is larger but the angle is smaller; the cosine has its maximum (1) when the angle
between two vectors is smallest (0◦); the cosine of all other angles is less than 1.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrices above represent each cell by frequencies, either of words
with documents (Fig. 6.5), or words with other words (Fig. 6.6). But raw frequency
is not the best measure of association between words. Raw frequency is very skewed
and not very discriminative. If we want to know what kinds of contexts are shared
by cherry and strawberry but not by digital and information, we’re not going to get
good discrimination from words like the, it, or they, which occur frequently with
all sorts of words and aren’t informative about any particular word. We saw this
also in Fig. 6.3 for the Shakespeare corpus; the dimension for the word good is not
very discriminative between plays; good is simply a frequent word and has roughly
equivalent high frequencies in each of the plays.

It’s a bit of a paradox. Words that occur nearby frequently (maybe pie nearby
cherry) are more important than words that only appear once or twice. Yet words

12 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

that are too frequent—ubiquitous, like the or good— are unimportant. How can we
balance these two conflicting constraints?

There are two common solutions to this problem: in this section we’ll describe
the tf-idf algorithm, usually used when the dimensions are documents. In the next
we introduce the PPMI algorithm (usually used when the dimensions are words).

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) is the product
of two terms, each term capturing one of these two intuitions:

The first is the term frequency (Luhn, 1957): the frequency of the word t in theterm frequency

document d. We can just use the raw count as the term frequency:

tft,d = count(t,d) (6.11)

More commonly we squash the raw frequency a bit, by using the log10 of the fre-
quency instead. The intuition is that a word appearing 100 times in a document
doesn’t make that word 100 times more likely to be relevant to the meaning of the
document. Because we can’t take the log of 0, we normally add 1 to the count:2

tft,d = log10(count(t,d)+1) (6.12)

If we use log weighting, terms which occur 0 times in a document would have
tf = log10(1) = 0, 10 times in a document tf = log10(11) = 1.4, 100 times tf =
log10(101) = 2.004, 1000 times tf = 3.00044, and so on.

The second factor in tf-idf is used to give a higher weight to words that occur
only in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that occur
frequently across the entire collection aren’t as helpful. The document frequencydocument

frequency
dft of a term t is the number of documents it occurs in. Document frequency is
not the same as the collection frequency of a term, which is the total number of
times the word appears in the whole collection in any document. Consider in the
collection of Shakespeare’s 37 plays the two words Romeo and action. The words
have identical collection frequencies (they both occur 113 times in all the plays) but
very different document frequencies, since Romeo only occurs in a single play. If
our goal is to find documents about the romantic tribulations of Romeo, the word
Romeo should be highly weighted, but not action:

Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We emphasize discriminative words like Romeo via the inverse document fre-
quency or idf term weight (Sparck Jones, 1972). The idf is defined using the frac-idf

tion N/dft , where N is the total number of documents in the collection, and dft is
the number of documents in which term t occurs. The fewer documents in which a
term occurs, the higher this weight. The lowest weight of 1 is assigned to terms that
occur in all the documents. It’s usually clear what counts as a document: in Shake-
speare we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper articles,
the document is a single article. Occasionally your corpus might not have appropri-
ate document divisions and you might need to break up the corpus into documents
yourself for the purposes of computing idf.

2 Or we can use this alternative: tft,d =

{
1+ log10 count(t,d) if count(t,d)> 0
0 otherwise

6.5 • TF-IDF: WEIGHING TERMS IN THE VECTOR 13

Because of the large number of documents in many collections, this measure
too is usually squashed with a log function. The resulting definition for inverse
document frequency (idf) is thus

idft = log10

(
N
dft

)
(6.13)

Here are some idf values for some words in the Shakespeare corpus, ranging from
extremely informative words which occur in only one play like Romeo, to those that
occur in a few like salad or Falstaff, to those which are very common like fool or so
common as to be completely non-discriminative since they occur in all 37 plays like
good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighted value wt,d for word t in document d thus combines termtf-idf

frequency tft,d (defined either by Eq. 6.11 or by Eq. 6.12) with idf from Eq. 6.13:

wt,d = tft,d× idft (6.14)

Fig. 6.9 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2,
using the tf equation Eq. 6.12. Note that the tf-idf values for the dimension corre-
sponding to the word good have now all become 0; since this word appears in every
document, the tf-idf algorithm leads it to be ignored. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log10(20+ 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.6.

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

14 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

6.6 Pointwise Mutual Information (PMI)

An alternative weighting function to tf-idf, PPMI (positive pointwise mutual infor-
mation), is used for term-term-matrices, when the vector dimensions correspond to
words rather than documents. PPMI draws on the intuition that the best way to weigh
the association between two words is to ask how much more the two words co-occur
in our corpus than we would have a priori expected them to appear by chance.

Pointwise mutual information (Fano, 1961)4 is one of the most important con-
pointwise

mutual
information cepts in NLP. It is a measure of how often two events x and y occur, compared with

what we would expect if they were independent:

I(x,y) = log2
P(x,y)

P(x)P(y)
(6.16)

The pointwise mutual information between a target word w and a context word
c (Church and Hanks 1989, Church and Hanks 1990) is then defined as:

PMI(w,c) = log2
P(w,c)

P(w)P(c)
(6.17)

The numerator tells us how often we observed the two words together (assuming
we compute probability by using the MLE). The denominator tells us how often
we would expect the two words to co-occur assuming they each occurred indepen-
dently; recall that the probability of two independent events both occurring is just
the product of the probabilities of the two events. Thus, the ratio gives us an esti-
mate of how much more the two words co-occur than we expect by chance. PMI is
a useful tool whenever we need to find words that are strongly associated.

PMI values range from negative to positive infinity. But negative PMI values
(which imply things are co-occurring less often than we would expect by chance)
tend to be unreliable unless our corpora are enormous. To distinguish whether
two words whose individual probability is each 10−6 occur together less often than
chance, we would need to be certain that the probability of the two occurring to-
gether is significantly different than 10−12, and this kind of granularity would require
an enormous corpus. Furthermore it’s not clear whether it’s even possible to evalu-
ate such scores of ‘unrelatedness’ with human judgments. For this reason it is more
common to use Positive PMI (called PPMI) which replaces all negative PMI valuesPPMI

with zero (Church and Hanks 1989, Dagan et al. 1993, Niwa and Nitta 1994)5:

PPMI(w,c) = max(log2
P(w,c)

P(w)P(c)
,0) (6.18)

More formally, let’s assume we have a co-occurrence matrix F with W rows (words)
and C columns (contexts), where fi j gives the number of times word wi occurs in

4 PMI is based on the mutual information between two random variables X and Y , defined as:

I(X ,Y) =
∑

x

∑
y

P(x,y) log2
P(x,y)

P(x)P(y)
(6.15)

In a confusion of terminology, Fano used the phrase mutual information to refer to what we now call
pointwise mutual information and the phrase expectation of the mutual information for what we now call
mutual information
5 Positive PMI also cleanly solves the problem of what to do with zero counts, using 0 to replace the
−∞ from log(0).

6.6 • POINTWISE MUTUAL INFORMATION (PMI) 15

context c j. This can be turned into a PPMI matrix where ppmii j gives the PPMI
value of word wi with context c j as follows:

pi j =
fi j∑W

i=1
∑C

j=1 fi j
pi∗ =

∑C
j=1 fi j∑W

i=1
∑C

j=1 fi j
p∗ j =

∑W
i=1 fi j∑W

i=1
∑C

j=1 fi j
(6.19)

PPMIi j = max(log2
pi j

pi∗p∗ j
,0) (6.20)

Let’s see some PPMI calculations. We’ll use Fig. 6.10, which repeats Fig. 6.6 plus
all the count marginals, and let’s pretend for ease of calculation that these are the
only words/contexts that matter.

computer data result pie sugar count(w)
cherry 2 8 9 442 25 486

strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 3447

information 3325 3982 378 5 13 7703

count(context) 4997 5673 473 512 61 11716
Figure 6.10 Co-occurrence counts for four words in 5 contexts in the Wikipedia corpus,
together with the marginals, pretending for the purpose of this calculation that no other
words/contexts matter.

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 6.6 encompassed all the relevant word contexts/dimensions,
as follows:

P(w=information,c=data) =
3982
11716

= .3399

P(w=information) =
7703
11716

= .6575

P(c=data) =
5673
11716

= .4842

ppmi(information,data) = log2(.3399/(.6575∗ .4842)) = .0944

Fig. 6.11 shows the joint probabilities computed from the counts in Fig. 6.10, and
Fig. 6.12 shows the PPMI values. Not surprisingly, cherry and strawberry are highly
associated with both pie and sugar, and data is mildly associated with information.

p(w,context) p(w)
computer data result pie sugar p(w)

cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415
strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068

digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942
information 0.2838 0.3399 0.0323 0.0004 0.0011 0.6575

p(context) 0.4265 0.4842 0.0404 0.0437 0.0052
Figure 6.11 Replacing the counts in Fig. 6.6 with joint probabilities, showing the marginals
around the outside.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency

16 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

computer data result pie sugar
cherry 0 0 0 4.38 3.30

strawberry 0 0 0 4.10 5.51
digital 0.18 0.01 0 0 0

information 0.02 0.09 0.28 0 0
Figure 6.12 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 6.11. Note that most of the 0 PPMI values are ones that had
a negative PMI; for example PMI(cherry,computer) = -6.7, meaning that cherry and computer
co-occur on Wikipedia less often than we would expect by chance, and with PPMI we replace
negative values by zero.

events is to slightly change the computation for P(c), using a different function Pα(c)
that raises the probability of the context word to the power of α:

PPMIα(w,c) = max(log2
P(w,c)

P(w)Pα(c)
,0) (6.21)

Pα(c) =
count(c)α∑
c count(c)α

(6.22)

Levy et al. (2015) found that a setting of α = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams described below in Eq. 6.32). This works because raising the count to α =
0.75 increases the probability assigned to rare contexts, and hence lowers their PMI
(Pα(c)> P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

6.7 Applications of the tf-idf or PPMI vector models

In summary, the vector semantics model we’ve described so far represents a target
word as a vector with dimensions corresponding either to to the documents in a large
collection (the term-document matrix) or to the counts of words in some neighboring
window (the term-term matrix). The values in each dimension are counts, weighted
by tf-idf (for term-document matrices) or PPMI (for term-term matrices), and the
vectors are sparse (since most values are zero).

The model computes the similarity between two words x and y by taking the
cosine of their tf-idf or PPMI vectors; high cosine, high similarity. This entire model
is sometimes referred to as the tf-idf model or the PPMI model, after the weighting
function.

The tf-idf model of meaning is often used for document functions like deciding
if two documents are similar. We represent a document by taking the vectors of
all the words in the document, and computing the centroid of all those vectors.centroid

The centroid is the multidimensional version of the mean; the centroid of a set of
vectors is a single vector that has the minimum sum of squared distances to each of
the vectors in the set. Given k word vectors w1,w2, ...,wk, the centroid document
vector d is:document

vector

d =
w1 +w2 + ...+wk

k
(6.23)

6.8 • WORD2VEC 17

Given two documents, we can then compute their document vectors d1 and d2, and
estimate the similarity between the two documents by cos(d1,d2). Document sim-
ilarity is also useful for all sorts of applications; information retrieval, plagiarism
detection, news recommender systems, and even for digital humanities tasks like
comparing different versions of a text to see which are similar to each other.

Either the PPMI model or the tf-idf model can be used to compute word simi-
larity, for tasks like finding word paraphrases, tracking changes in word meaning, or
automatically discovering meanings of words in different corpora. For example, we
can find the 10 most similar words to any target word w by computing the cosines
between w and each of the V −1 other words, sorting, and looking at the top 10.

6.8 Word2vec

In the previous sections we saw how to represent a word as a sparse, long vector with
dimensions corresponding to words in the vocabulary or documents in a collection.
We now introduce a more powerful word representation: embeddings, short dense
vectors. Unlike the vectors we’ve seen so far, embeddings are short, with number
of dimensions d ranging from 50-1000, rather than the much larger vocabulary size
|V | or number of documents D we’ve seen. These d dimensions don’t have a clear
interpretation. And the vectors are dense: instead of vector entries being sparse,
mostly-zero counts or functions of counts, the values will be real-valued numbers
that can be negative.

It turns out that dense vectors work better in every NLP task than sparse vectors.
While we don’t completely understand all the reasons for this, we have some intu-
itions. Representing words as 300-dimensional dense vectors requires our classifiers
to learn far fewer weights than if we represented words as 50,000-dimensional vec-
tors, and the smaller parameter space possibly helps with generalization and avoid-
ing overfitting. Dense vectors may also do a better job of capturing synonymy.
For example, in a sparse vector representation, dimensions for synonyms like car
and automobile dimension are distinct and unrelated; sparse vectors may thus fail
to capture the similarity between a word with car as a neighbor and a word with
automobile as a neighbor.

In this section we introduce one method for computing embeddings: skip-gramskip-gram

with negative sampling, sometimes called SGNS. The skip-gram algorithm is oneSGNS

of two algorithms in a software package called word2vec, and so sometimes the al-word2vec

gorithm is loosely referred to as word2vec (Mikolov et al. 2013, Mikolov et al. 2013a).
The word2vec methods are fast, efficient to train, and easily available online with
code and pretrained embeddings. Word2vec embeddings are static embeddings,static

embeddings
meaning that the method learns one fixed embedding for each word in the vocabu-
lary. In Chapter 10 we’ll introduce methods for learning dynamic contextual em-
beddings like the popular BERT or ELMO representations, in which the vector for
each word is different in different contexts.

The intuition of word2vec is that instead of counting how often each word w oc-
curs near, say, apricot, we’ll instead train a classifier on a binary prediction task: “Is
word w likely to show up near apricot?” We don’t actually care about this prediction
task; instead we’ll take the learned classifier weights as the word embeddings.

The revolutionary intuition here is that we can just use running text as implicitly
supervised training data for such a classifier; a word c that occurs near the target
word apricot acts as gold ‘correct answer’ to the question “Is word c likely to show

18 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

up near apricot?” This method, often called self-supervision, avoids the need forself-supervision

any sort of hand-labeled supervision signal. This idea was first proposed in the task
of neural language modeling, when Bengio et al. (2003) and Collobert et al. (2011)
showed that a neural language model (a neural network that learned to predict the
next word from prior words) could just use the next word in running text as its
supervision signal, and could be used to learn an embedding representation for each
word as part of doing this prediction task.

We’ll see how to do neural networks in the next chapter, but word2vec is a
much simpler model than the neural network language model, in two ways. First,
word2vec simplifies the task (making it binary classification instead of word pre-
diction). Second, word2vec simplifies the architecture (training a logistic regression
classifier instead of a multi-layer neural network with hidden layers that demand
more sophisticated training algorithms). The intuition of skip-gram is:

1. Treat the target word and a neighboring context word as positive examples.
2. Randomly sample other words in the lexicon to get negative samples.
3. Use logistic regression to train a classifier to distinguish those two cases.
4. Use the learned weights as the embeddings.

6.8.1 The classifier
Let’s start by thinking about the classification task, and then turn to how to train.
Imagine a sentence like the following, with a target word apricot, and assume we’re
using a window of ±2 context words:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 w c3 c4

Our goal is to train a classifier such that, given a tuple (w,c) of a target word
w paired with a candidate context word c (for example (apricot, jam), or perhaps
(apricot, aardvark)) it will return the probability that c is a real context word (true
for jam, false for aardvark):

P(+|w,c) (6.24)

The probability that word c is not a real context word for w is just 1 minus
Eq. 6.24:

P(−|w,c) = 1−P(+|w,c) (6.25)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on embedding similarity: a word is likely to
occur near the target if its embedding is similar to the target embedding. To compute
similarity between these dense embeddings, we rely on the intuition that two vectors
are similar if they have a high dot product (after all, cosine is just a normalized dot
product). In other words:

Similarity(w,c)≈ c ·w (6.26)

The dot product c ·w is not a probability, it’s just a number ranging from −∞ to ∞

(since the elements in word2vec embeddings can be negative, the dot product can be
negative). To turn the dot product into a probability, we’ll use the logistic or sigmoid
function σ(x), the fundamental core of logistic regression:

σ(x) =
1

1+ exp(−x)
(6.27)

6.8 • WORD2VEC 19

We model the probability that word c is a real context word for target word w as:

P(+|w,c) = σ(c ·w) = 1
1+ exp(−c ·w)

(6.28)

The sigmoid function returns a number between 0 and 1, but to make it a probability
we’ll also need the total probability of the two possible events (c is a context word,
and c isn’t a context word) to sum to 1. We thus estimate the probability that word c
is not a real context word for w as:

P(−|w,c) = 1−P(+|w,c)

= σ(−c ·w) = 1
1+ exp(c ·w)

(6.29)

Equation 6.28 gives us the probability for one word, but there are many context
words in the window. Skip-gram makes the simplifying assumption that all context
words are independent, allowing us to just multiply their probabilities:

P(+|w,c1:L) =

L∏
i=1

σ(−ci ·w) (6.30)

logP(+|w,c1:L) =

L∑
i=1

logσ(−ci ·w) (6.31)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
w and its context window of L words c1:L, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. To compute this probability, we just need embeddings for
each target word and context word in the vocabulary.

1

W

C

aardvark

zebra

zebra

aardvark

apricot

apricot

|V|
|V|+1

2V

& =
target words

context & noise
words

…

…

1..d

…

…

Figure 6.13 The embeddings learned by the skipgram model. The algorithm stores two
embeddings for each word, the target embedding (sometimes called the input embedding)
and the context embedding (sometimes called the output embedding). The parameter θ that
the algorithm learns is thus a matrix of 2|V | vectors, each of dimension d, formed by concate-
nating two matrices, the target embeddings W and the context+noise embeddings C.

Fig. 6.13 shows the intuition of the parameters we’ll need. Skip-gram actually
stores two embeddings for each word, one for the word as a target, and one for the

20 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

word considered as context. Thus the parameters we need to learn are two matrices
W and C, each containing an embedding for every one of the |V | words in the vo-
cabulary V .6 Let’s now turn to learning these embeddings (which is the real goal of
training this classifier in the first place).

6.8.2 Learning skip-gram embeddings
Skip-gram learns embeddings by starting with random embedding vectors and then
iteratively shifting the embedding of each word w to be more like the embeddings
of words that occur nearby in texts, and less like the embeddings of words that don’t
occur nearby. Let’s start by considering a single piece of training data:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 w c3 c4

This example has a target word w (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
w cpos

apricot tablespoon
apricot of
apricot jam
apricot a

negative examples -
w cneg w cneg
apricot aardvark apricot seven
apricot my apricot forever
apricot where apricot dear
apricot coaxial apricot if

For training a binary classifier we also need negative examples. In fact skip-
gram with negative sampling (SGNS) uses more negative examples than positive
examples (with the ratio between them set by a parameter k). So for each of these
(w,cpos) training instances we’ll create k negative samples, each consisting of the
target w plus a ‘noise word’ cneg. A noise word is a random word from the lexicon,
constrained not to be the target word w. The right above shows the setting where
k = 2, so we’ll have 2 negative examples in the negative training set − for each
positive example w,cpos.

The noise words are chosen according to their weighted unigram frequency
pα(w), where α is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose
the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set α = .75, i.e. use the
weighting p

3
4 (w):

Pα(w) =
count(w)α∑
w′ count(w′)α

(6.32)

Setting α = .75 gives better performance because it gives rare noise words slightly
higher probability: for rare words, Pα(w) > P(w). To illustrate this intuition, it
might help to work out the probabilities for an example with two events, P(a) = .99
and P(b) = .01:

Pα(a) =
.99.75

.99.75 + .01.75 = .97

Pα(b) =
.01.75

.99.75 + .01.75 = .03 (6.33)

6 In principle the target matrix and the context matrix could use different vocabularies, but we’ll simplify
by assuming one shared vocabulary V .

6.8 • WORD2VEC 21

Given the set of positive and negative training instances, and an initial set of embed-
dings, the goal of the learning algorithm is to adjust those embeddings to

• Maximize the similarity of the target word, context word pairs (w,cpos) drawn
from the positive examples

• Minimize the similarity of the (w,cneg) pairs from the negative examples.
If we consider one word/context pair (w,cpos) with its k noise words cneg1 ...cnegk ,

we can express these two goals as the following loss function L to be minimized
(hence the −); here the first term expresses that we want the classifier to assign the
real context word cpos a high probability of being a neighbor, and the second term
expresses that we want to assign each of the noise words cnegi a high probability of
being a non-neighbor, all multiplied because we assume independence:

LCE = − log

[
P(+|w,cpos)

k∏
i=1

P(−|w,cnegi)

]

= −

[
logP(+|w,cpos)+

k∑
i=1

logP(−|w,cnegi)

]

= −

[
logP(+|w,cpos)+

k∑
i=1

log
(
1−P(+|w,cnegi)

)]

= −

[
logσ(cpos ·w)+

k∑
i=1

logσ(−cnegi ·w)

]
(6.34)

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words.

We minimize this loss function using stochastic gradient descent. Fig. 6.14
shows the intuition of one step of learning.

W

C

move apricot and jam closer,
increasing cpos z w

aardvark

move apricot and matrix apart
decreasing cneg1 z w

“…apricot jam…”

w

zebra

zebra

aardvark

jam

apricot

cpos

matrix

Tolstoy move apricot and Tolstoy apart
decreasing cneg2 z w

!
cneg1
cneg2

k=2

Figure 6.14 Intuition of one step of gradient descent. The skip-gram model tries to shift
embeddings so the target embeddings (here for apricot) are closer to (have a higher dot prod-
uct with) context embeddings for nearby words (here jam) and further from (lower dot product
with) context embeddings for noise words that don’t occur nearby (here Tolstoy and matrix).

To get the gradient, we need to take the derivative of Eq. 6.34 with respect to
the different embeddings. It turns out the derivatives are the following (we leave the

22 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

proof as an exercise at the end of the chapter):

∂LCE

∂cpos
= [σ(cpos ·w)−1]w (6.35)

∂LCE

∂cneg
= [σ(cneg ·w)]w (6.36)

∂LCE

∂w
= [σ(cpos ·w)−1]cpos +

k∑
i=1

[σ(cnegi ·w)]cnegi (6.37)

The update equations going from time step t to t + 1 in stochastic gradient descent
are thus:

ct+1
pos = ct

pos−η [σ(ct
pos ·w)−1]w (6.38)

ct+1
neg = ct

neg−η [σ(ct
neg ·w)]w (6.39)

wt+1 = wt −η [σ(cpos ·wt)−1]cpos +

k∑
i=1

[σ(cnegi ·w
t)]cnegi (6.40)

Just as in logistic regression, then, the learning algorithm starts with randomly ini-
tialized W and C matrices, and then walks through the training corpus using gradient
descent to move W and C so as to maximize the objective in Eq. 6.34 by making the
updates in (Eq. 6.39)-(Eq. 6.40).

Recall that the skip-gram model learns two separate embeddings for each word i:
the target embedding wi and the context embedding ci, stored in two matrices, thetarget

embedding
context

embedding target matrix W and the context matrix C. It’s common to just add them together,
representing word i with the vector wi + ci. Alternatively we can throw away the C
matrix and just represent each word i by the vector wi.

As with the simple count-based methods like tf-idf, the context window size L
affects the performance of skip-gram embeddings, and experiments often tune the
parameter L on a devset.

6.8.3 Other kinds of static embeddings
There are many kinds of static embeddings. An extension of word2vec, fasttextfasttext

(Bojanowski et al., 2017), deals with unknown words and sparsity in languages with
rich morphology, by using subword models. Each word in fasttext is represented as
itself plus a bag of constituent n-grams, with special boundary symbols < and >
added to each word. For example, with n = 3 the word where would be represented
by the sequence <where> plus the character n-grams:

<wh, whe, her, ere, re>

Then a skipgram embedding is learned for each constituent n-gram, and the word
where is represented by the sum of all of the embeddings of its constituent n-grams.
A fasttext open-source library, including pretrained embeddings for 157 languages,
is available at https://fasttext.cc.

The most widely used static embedding model besides word2vec is GloVe (Pen-
nington et al., 2014), short for Global Vectors, because the model is based on cap-
turing global corpus statistics. GloVe is based on ratios of probabilities from the
word-word co-occurrence matrix, combining the intuitions of count-based models
like PPMI while also capturing the linear structures used by methods like word2vec.

https://fasttext.cc

6.9 • VISUALIZING EMBEDDINGS 23

It turns out that dense embeddings like word2vec actually have an elegant math-
ematical relationships with sparse embeddings like PPMI, in which word2vec can
be seen as implicitly optimizing a shifted version of a PPMI matrix (Levy and Gold-
berg, 2014c).

6.9 Visualizing Embeddings

“I see well in many dimensions as long as the dimensions are around two.”
The late economist Martin Shubik

Visualizing embeddings is an important goal in helping understand, apply, and
improve these models of word meaning. But how can we visualize a (for example)
100-dimensional vector?

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence

HEAD

HANDFACE

DOG

AMERICA

CAT

EYE

EUROPE

FOOT

CHINA
FRANCE

CHICAGO

ARM

FINGER

NOSE

LEG

RUSSIA

MOUSE

AFRICA

ATLANTA

EAR

SHOULDER

ASIA

COW

BULL

PUPPY LION

HAWAII

MONTREAL

TOKYO

TOE

MOSCOW

TOOTH

NASHVILLE

BRAZIL

WRIST

KITTEN

ANKLE

TURTLE

OYSTER

Figure 8: Multidimensional scaling for three noun classes.

WRIST
ANKLE

SHOULDER
ARM
LEG
HAND

FOOT
HEAD
NOSE
FINGER

TOE
FACE
EAR
EYE

TOOTH
DOG
CAT

PUPPY
KITTEN

COW
MOUSE

TURTLE
OYSTER

LION
BULL
CHICAGO
ATLANTA

MONTREAL
NASHVILLE

TOKYO
CHINA
RUSSIA
AFRICA
ASIA
EUROPE
AMERICA

BRAZIL
MOSCOW

FRANCE
HAWAII

Figure 9: Hierarchical clustering for three noun classes using distances based on vector correlations.

20

The simplest way to visualize the meaning of a word
w embedded in a space is to list the most similar words to
w by sorting the vectors for all words in the vocabulary by
their cosine with the vector for w. For example the 7 closest
words to frog using the GloVe embeddings are: frogs, toad,
litoria, leptodactylidae, rana, lizard, and eleutherodactylus
(Pennington et al., 2014).

Yet another visualization method is to use a clustering
algorithm to show a hierarchical representation of which
words are similar to others in the embedding space. The
uncaptioned figure on the left uses hierarchical clustering
of some embedding vectors for nouns as a visualization
method (Rohde et al., 2006).

Probably the most common visualization method, how-
ever, is to project the 100 dimensions of a word down into 2
dimensions. Fig. 6.1 showed one such visualization, as does
Fig. 6.16, using a projection method called t-SNE (van der
Maaten and Hinton, 2008).

6.10 Semantic properties of embeddings

In this section we briefly summarize some of the semantic properties of embeddings
that have been studied.

Different types of similarity or association: One parameter of vector semantic
models that is relevant to both sparse tf-idf vectors and dense word2vec vectors is
the size of the context window used to collect counts. This is generally between 1
and 10 words on each side of the target word (for a total context of 2-20 words).

The choice depends on the goals of the representation. Shorter context windows
tend to lead to representations that are a bit more syntactic, since the information is
coming from immediately nearby words. When the vectors are computed from short
context windows, the most similar words to a target word w tend to be semantically
similar words with the same parts of speech. When vectors are computed from long
context windows, the highest cosine words to a target word w tend to be words that
are topically related but not similar.

24 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

For example Levy and Goldberg (2014a) showed that using skip-gram with a
window of±2, the most similar words to the word Hogwarts (from the Harry Potter
series) were names of other fictional schools: Sunnydale (from Buffy the Vampire
Slayer) or Evernight (from a vampire series). With a window of±5, the most similar
words to Hogwarts were other words topically related to the Harry Potter series:
Dumbledore, Malfoy, and half-blood.

It’s also often useful to distinguish two kinds of similarity or association between
words (Schütze and Pedersen, 1993). Two words have first-order co-occurrencefirst-order

co-occurrence
(sometimes called syntagmatic association) if they are typically nearby each other.
Thus wrote is a first-order associate of book or poem. Two words have second-order
co-occurrence (sometimes called paradigmatic association) if they have similarsecond-order

co-occurrence
neighbors. Thus wrote is a second-order associate of words like said or remarked.

Analogy/Relational Similarity: Another semantic property of embeddings is their
ability to capture relational meanings. In an important early vector space model of
cognition, Rumelhart and Abrahamson (1973) proposed the parallelogram modelparallelogram

model
for solving simple analogy problems of the form a is to b as a* is to what?. In such
problems, a system given a problem like apple:tree::grape:?, i.e., apple is to tree as
grape is to , and must fill in the word vine. In the parallelogram model, illus-
trated in Fig. 6.15, the vector from the word apple to the word tree (=

»
apple− # »tree)

is added to the vector for grape (# »grape); the nearest word to that point is returned.

tree

apple

grape
vine

Figure 6.15 The parallelogram model for analogy problems (Rumelhart and Abrahamson,
1973): the location of

»
vine can be found by subtracting # »tree from

»
apple and adding # »grape.

In early work with sparse embeddings, scholars showed that sparse vector mod-
els of meaning could solve such analogy problems (Turney and Littman, 2005), but
the parallelogram method received more modern attention because of its success
with word2vec or GloVe vectors (Mikolov et al. 2013b, Levy and Goldberg 2014b,
Pennington et al. 2014). For example, the result of the expression (

»
king)− # »man+

»woman is a vector close to # »queen. Similarly,
»
Paris− # »

France+
»
Italy) results in a

vector that is close to
»
Rome. The embedding model thus seems to be extracting rep-

resentations of relations like MALE-FEMALE, or CAPITAL-CITY-OF, or even COM-
PARATIVE/SUPERLATIVE, as shown in Fig. 6.16 from GloVe.

For a a:b::a*:b* problem, meaning the algorithm is given a, b, and a* and must
find b*, the parallelogram method is thus:

b̂∗ = argmax
x

distance(x,a∗−a+b) (6.41)

with the distance function defined either as cosine or as Euclidean distance.
There are some caveats. For example, the closest value returned by the paral-

lelogram algorithm in word2vec or GloVe embedding spaces is usually not in fact
b* but one of the 3 input words or their morphological variants (i.e., cherry:red ::

6.11 • BIAS AND EMBEDDINGS 25

(a) (b)

Figure 6.16 Relational properties of the GloVe vector space, shown by projecting vectors onto two dimen-
sions. (a) (

»
king)− # »man+ # »woman is close to # »queen. (b) offsets seem to capture comparative and superlative

morphology (Pennington et al., 2014).

potato:x returns potato or potatoes instead of brown), so these must be explicitly
excluded. Furthermore while embedding spaces perform well if the task involves
frequent words, small distances, and certain relations (like relating countries with
their capitals or verbs/nouns with their inflected forms), the parallelogram method
with embeddings doesn’t work as well for other relations (Linzen 2016, Gladkova
et al. 2016, Ethayarajh et al. 2019a), and indeed Peterson et al. (2020) argue that the
parallelogram method is in general too simple to model the human cognitive process
of forming analogies of this kind.

6.10.1 Embeddings and Historical Semantics
Embeddings can also be a useful tool for studying how meaning changes over time,
by computing multiple embedding spaces, each from texts written in a particular
time period. For example Fig. 6.17 shows a visualization of changes in meaning in
English words over the last two centuries, computed by building separate embedding
spaces for each decade from historical corpora like Google N-grams (Lin et al.,
2012) and the Corpus of Historical American English (Davies, 2012).

6.11 Bias and Embeddings

In addition to their ability to learn word meaning from text, embeddings, alas,
also reproduce the implicit biases and stereotypes that were latent in the text. As
the prior section just showed, embeddings can roughly model relational similar-
ity: ‘queen’ as the closest word to ‘king’ - ‘man’ + ‘woman’ implies the analogy
man:woman::king:queen. But these same embedding analogies also exhibit gender
stereotypes. For example Bolukbasi et al. (2016) find that the closest occupation
to ‘man’ - ‘computer programmer’ + ‘woman’ in word2vec embeddings trained on
news text is ‘homemaker’, and that the embeddings similarly suggest the analogy
‘father’ is to ‘doctor’ as ‘mother’ is to ‘nurse’. This could result in what Crawford
(2017) and Blodgett et al. (2020) call an allocational harm, when a system allo-allocational

harm
cates resources (jobs or credit) unfairly to different groups. For example algorithms

26 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS
CHAPTER 5. DYNAMIC SOCIAL REPRESENTATIONS OF WORD MEANING79

Figure 5.1: Two-dimensional visualization of semantic change in English using SGNS
vectors (see Section 5.8 for the visualization algorithm). A, The word gay shifted
from meaning “cheerful” or “frolicsome” to referring to homosexuality. A, In the early
20th century broadcast referred to “casting out seeds”; with the rise of television and
radio its meaning shifted to “transmitting signals”. C, Awful underwent a process of
pejoration, as it shifted from meaning “full of awe” to meaning “terrible or appalling”
[212].

that adverbials (e.g., actually) have a general tendency to undergo subjectification

where they shift from objective statements about the world (e.g., “Sorry, the car is

actually broken”) to subjective statements (e.g., “I can’t believe he actually did that”,

indicating surprise/disbelief).

5.2.2 Computational linguistic studies

There are also a number of recent works analyzing semantic change using computational

methods. [200] use latent semantic analysis to analyze how word meanings broaden

and narrow over time. [113] use raw co-occurrence vectors to perform a number of

historical case-studies on semantic change, and [252] perform a similar set of small-

scale case-studies using temporal topic models. [87] construct point-wise mutual

information-based embeddings and found that semantic changes uncovered by their

method had reasonable agreement with human judgments. [129] and [119] use “neural”

word-embedding methods to detect linguistic change points. Finally, [257] analyze

historical co-occurrences to test whether synonyms tend to change in similar ways.

Figure 6.17 A t-SNE visualization of the semantic change of 3 words in English using
word2vec vectors. The modern sense of each word, and the grey context words, are com-
puted from the most recent (modern) time-point embedding space. Earlier points are com-
puted from earlier historical embedding spaces. The visualizations show the changes in the
word gay from meanings related to “cheerful” or “frolicsome” to referring to homosexuality,
the development of the modern “transmission” sense of broadcast from its original sense of
sowing seeds, and the pejoration of the word awful as it shifted from meaning “full of awe”
to meaning “terrible or appalling” (Hamilton et al., 2016).

that use embeddings as part of a search for hiring potential programmers or doctors
might thus incorrectly downweight documents with women’s names.

It turns out that embeddings don’t just reflect the statistics of their input, but
also amplify bias; gendered terms become more gendered in embedding space thanbias

amplification
they were in the input text statistics (Zhao et al. 2017, Ethayarajh et al. 2019b, Jia
et al. 2020), and biases are more exaggerated than in actual labor employment statis-
tics (Garg et al., 2018).

Embeddings also encode the implicit associations that are a property of human
reasoning. The Implicit Association Test (Greenwald et al., 1998) measures peo-
ple’s associations between concepts (like ‘flowers’ or ‘insects’) and attributes (like
‘pleasantness’ and ‘unpleasantness’) by measuring differences in the latency with
which they label words in the various categories.7 Using such methods, people
in the United States have been shown to associate African-American names with
unpleasant words (more than European-American names), male names more with
mathematics and female names with the arts, and old people’s names with unpleas-
ant words (Greenwald et al. 1998, Nosek et al. 2002a, Nosek et al. 2002b). Caliskan
et al. (2017) replicated all these findings of implicit associations using GloVe vectors
and cosine similarity instead of human latencies. For example African-American
names like ‘Leroy’ and ‘Shaniqua’ had a higher GloVe cosine with unpleasant words
while European-American names (‘Brad’, ‘Greg’, ‘Courtney’) had a higher cosine
with pleasant words. These problems with embeddings are an example of a repre-
sentational harm (Crawford 2017, Blodgett et al. 2020), which is a harm caused byrepresentational

harm
a system demeaning or even ignoring some social groups. Any embedding-aware al-
gorithm that made use of word sentiment could thus exacerbate bias against African
Americans.

Recent research focuses on ways to try to remove these kinds of biases, for ex-
ample by developing a transformation of the embedding space that removes gender
stereotypes but preserves definitional gender (Bolukbasi et al. 2016, Zhao et al. 2017)

7 Roughly speaking, if humans associate ‘flowers’ with ‘pleasantness’ and ‘insects’ with ‘unpleasant-
ness’, when they are instructed to push a green button for ‘flowers’ (daisy, iris, lilac) and ‘pleasant words’
(love, laughter, pleasure) and a red button for ‘insects’ (flea, spider, mosquito) and ‘unpleasant words’
(abuse, hatred, ugly) they are faster than in an incongruous condition where they push a red button for
‘flowers’ and ‘unpleasant words’ and a green button for ‘insects’ and ‘pleasant words’.

6.12 • EVALUATING VECTOR MODELS 27

or changing the training procedure (Zhao et al., 2018). However, although these sorts
of debiasing may reduce bias in embeddings, they do not eliminate it (Gonen anddebiasing

Goldberg, 2019), and this remains an open problem.
Historical embeddings are also being used to measure biases in the past. Garg

et al. (2018) used embeddings from historical texts to measure the association be-
tween embeddings for occupations and embeddings for names of various ethnici-
ties or genders (for example the relative cosine similarity of women’s names versus
men’s to occupation words like ‘librarian’ or ‘carpenter’) across the 20th century.
They found that the cosines correlate with the empirical historical percentages of
women or ethnic groups in those occupations. Historical embeddings also repli-
cated old surveys of ethnic stereotypes; the tendency of experimental participants in
1933 to associate adjectives like ‘industrious’ or ‘superstitious’ with, e.g., Chinese
ethnicity, correlates with the cosine between Chinese last names and those adjectives
using embeddings trained on 1930s text. They also were able to document historical
gender biases, such as the fact that embeddings for adjectives related to competence
(‘smart’, ‘wise’, ‘thoughtful’, ‘resourceful’) had a higher cosine with male than fe-
male words, and showed that this bias has been slowly decreasing since 1960. We
return in later chapters to this question about the role of bias in natural language
processing.

6.12 Evaluating Vector Models

The most important evaluation metric for vector models is extrinsic evaluation on
tasks, i.e., using vectors in an NLP task and seeing whether this improves perfor-
mance over some other model.

Nonetheless it is useful to have intrinsic evaluations. The most common metric
is to test their performance on similarity, computing the correlation between an
algorithm’s word similarity scores and word similarity ratings assigned by humans.
WordSim-353 (Finkelstein et al., 2002) is a commonly used set of ratings from 0
to 10 for 353 noun pairs; for example (plane, car) had an average score of 5.77.
SimLex-999 (Hill et al., 2015) is a more difficult dataset that quantifies similarity
(cup, mug) rather than relatedness (cup, coffee), and including both concrete and
abstract adjective, noun and verb pairs. The TOEFL dataset is a set of 80 questions,
each consisting of a target word with 4 additional word choices; the task is to choose
which is the correct synonym, as in the example: Levied is closest in meaning to:
imposed, believed, requested, correlated (Landauer and Dumais, 1997). All of these
datasets present words without context.

Slightly more realistic are intrinsic similarity tasks that include context. The
Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012) and the
Word-in-Context (WiC) dataset (Pilehvar and Camacho-Collados, 2019) offer richer
evaluation scenarios. SCWS gives human judgments on 2,003 pairs of words in their
sentential context, while WiC gives target words in two sentential contexts that are
either in the same or different senses; see Section ??. The semantic textual similarity
task (Agirre et al. 2012, Agirre et al. 2015) evaluates the performance of sentence-
level similarity algorithms, consisting of a set of pairs of sentences, each pair with
human-labeled similarity scores.

Another task used for evaluation is the analogy task, discussed on page 24, where
the system has to solve problems of the form a is to b as a* is to b*, given a, b, and a*
and having to find b* (Turney and Littman, 2005). A number of sets of tuples have

28 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

been created for this task, (Mikolov et al. 2013, Mikolov et al. 2013b, Gladkova
et al. 2016), covering morphology (city:cities::child:children), lexicographic rela-
tions (leg:table::spout::teapot) and encyclopedia relations (Beijing:China::Dublin:Ireland),
some drawing from the SemEval-2012 Task 2 dataset of 79 different relations (Jur-
gens et al., 2012).

All embedding algorithms suffer from inherent variability. For example because
of randomness in the initialization and the random negative sampling, algorithms
like word2vec may produce different results even from the same dataset, and in-
dividual documents in a collection may strongly impact the resulting embeddings
(Hellrich and Hahn 2016, Antoniak and Mimno 2018). When embeddings are used
to study word associations in particular corpora, therefore, it is best practice to train
multiple embeddings with bootstrap sampling over documents and average the re-
sults (Antoniak and Mimno, 2018).

6.13 Summary

• In vector semantics, a word is modeled as a vector—a point in high-dimensional
space, also called an embedding. In this chapter we focus on static embed-
dings, in each each word is mapped to a fixed embedding.

• Vector semantic models fall into two classes: sparse and dense. In sparse
models each dimension corresponds to a word in the vocabulary V and cells
are functions of co-occurrence counts. The term-document matrix has a row
for each word (term) in the vocabulary and a column for each document. The
word-context or term-term matrix has a row for each (target) word in the
vocabulary and a column for each context term in the vocabulary. Two sparse
weightings are common: the tf-idf weighting which weights each cell by its
term frequency and inverse document frequency, and PPMI (pointwise
positive mutual information) most common for for word-context matrices.

• Dense vector models have dimensionality 50–1000. Word2vec algorithms
like skip-gram are a popular way to compute dense embeddings. Skip-gram
trains a logistic regression classifier to compute the probability that two words
are ‘likely to occur nearby in text’. This probability is computed from the dot
product between the embeddings for the two words.

• Skip-gram uses stochastic gradient descent to train the classifier, by learning
embeddings that have a high dot product with embeddings of words that occur
nearby and a low dot product with noise words.

• Other important embedding algorithms include GloVe, a method based on
ratios of word co-occurrence probabilities.

• Whether using sparse or dense vectors, word and document similarities are
computed by some function of the dot product between vectors. The cosine
of two vectors—a normalized dot product—is the most popular such metric.

Bibliographical and Historical Notes
The idea of vector semantics arose out of research in the 1950s in three distinct
fields: linguistics, psychology, and computer science, each of which contributed a

BIBLIOGRAPHICAL AND HISTORICAL NOTES 29

fundamental aspect of the model.
The idea that meaning is related to the distribution of words in context was

widespread in linguistic theory of the 1950s, among distributionalists like Zellig
Harris, Martin Joos, and J. R. Firth, and semioticians like Thomas Sebeok. As Joos
(1950) put it,

the linguist’s “meaning” of a morpheme. . . is by definition the set of conditional
probabilities of its occurrence in context with all other morphemes.

The idea that the meaning of a word might be modeled as a point in a multi-
dimensional semantic space came from psychologists like Charles E. Osgood, who
had been studying how people responded to the meaning of words by assigning val-
ues along scales like happy/sad or hard/soft. Osgood et al. (1957) proposed that the
meaning of a word in general could be modeled as a point in a multidimensional
Euclidean space, and that the similarity of meaning between two words could be
modeled as the distance between these points in the space.

A final intellectual source in the 1950s and early 1960s was the field then called
mechanical indexing, now known as information retrieval. In what became knownmechanical

indexing
as the vector space model for information retrieval (Salton 1971, Sparck Jones 1986),
researchers demonstrated new ways to define the meaning of words in terms of vec-
tors (Switzer, 1965), and refined methods for word similarity based on measures
of statistical association between words like mutual information (Giuliano, 1965)
and idf (Sparck Jones, 1972), and showed that the meaning of documents could be
represented in the same vector spaces used for words.

Some of the philosophical underpinning of the distributional way of thinking
came from the late writings of the philosopher Wittgenstein, who was skeptical of
the possibility of building a completely formal theory of meaning definitions for
each word, suggesting instead that “the meaning of a word is its use in the language”
(Wittgenstein, 1953, PI 43). That is, instead of using some logical language to define
each word, or drawing on denotations or truth values, Wittgenstein’s idea is that we
should define a word by how it is used by people in speaking and understanding in
their day-to-day interactions, thus prefiguring the movement toward embodied and
experiential models in linguistics and NLP (Glenberg and Robertson 2000, Lake and
Murphy 2020, Bisk et al. 2020, Bender and Koller 2020).

More distantly related is the idea of defining words by a vector of discrete fea-
tures, which has roots at least as far back as Descartes and Leibniz (Wierzbicka 1992,
Wierzbicka 1996). By the middle of the 20th century, beginning with the work of
Hjelmslev (Hjelmslev, 1969) (originally 1943) and fleshed out in early models of
generative grammar (Katz and Fodor, 1963), the idea arose of representing mean-
ing with semantic features, symbols that represent some sort of primitive meaning.semantic

feature
For example words like hen, rooster, or chick, have something in common (they all
describe chickens) and something different (their age and sex), representable as:

hen +female, +chicken, +adult

rooster -female, +chicken, +adult
chick +chicken, -adult

The dimensions used by vector models of meaning to define words, however, are
only abstractly related to this idea of a small fixed number of hand-built dimensions.
Nonetheless, there has been some attempt to show that certain dimensions of em-
bedding models do contribute some specific compositional aspect of meaning like
these early semantic features.

The use of dense vectors to model word meaning, and indeed the term embed-
ding, grew out of the latent semantic indexing (LSI) model (Deerwester et al.,

30 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

1988) recast as LSA (latent semantic analysis) (Deerwester et al., 1990). In LSA
singular value decomposition—SVD— is applied to a term-document matrix (eachSVD

cell weighted by log frequency and normalized by entropy), and then the first 300
dimensions are used as the LSA embedding. Singular Value Decomposition (SVD)
is a method for finding the most important dimensions of a data set, those dimen-
sions along which the data varies the most. LSA was then quickly widely applied:
as a cognitive model Landauer and Dumais (1997), and for tasks like spell check-
ing (Jones and Martin, 1997), language modeling (Bellegarda 1997, Coccaro and
Jurafsky 1998, Bellegarda 2000) morphology induction (Schone and Jurafsky 2000,
Schone and Jurafsky 2001b), multiword expressions (MWEs) (Schone and Jurafsky,
2001a), and essay grading (Rehder et al., 1998). Related models were simultane-
ously developed and applied to word sense disambiguation by Schütze (1992). LSA
also led to the earliest use of embeddings to represent words in a probabilistic clas-
sifier, in the logistic regression document router of Schütze et al. (1995). The idea of
SVD on the term-term matrix (rather than the term-document matrix) as a model of
meaning for NLP was proposed soon after LSA by Schütze (1992). Schütze applied
the low-rank (97-dimensional) embeddings produced by SVD to the task of word
sense disambiguation, analyzed the resulting semantic space, and also suggested
possible techniques like dropping high-order dimensions. See Schütze (1997).

A number of alternative matrix models followed on from the early SVD work,
including Probabilistic Latent Semantic Indexing (PLSI) (Hofmann, 1999), Latent
Dirichlet Allocation (LDA) (Blei et al., 2003), and Non-negative Matrix Factoriza-
tion (NMF) (Lee and Seung, 1999).

The LSA community seems to have first used the word “embedding” in Landauer
et al. (1997), in a variant of its mathematical meaning as a mapping from one space
or mathematical structure to another. In LSA, the word embedding seems to have
described the mapping from the space of sparse count vectors to the latent space of
SVD dense vectors. Although the word thus originally meant the mapping from one
space to another, it has metonymically shifted to mean the resulting dense vector in
the latent space. and it is in this sense that we currently use the word.

By the next decade, Bengio et al. (2003) and Bengio et al. (2006) showed that
neural language models could also be used to develop embeddings as part of the task
of word prediction. Collobert and Weston (2007), Collobert and Weston (2008), and
Collobert et al. (2011) then demonstrated that embeddings could be used to rep-
resent word meanings for a number of NLP tasks. Turian et al. (2010) compared
the value of different kinds of embeddings for different NLP tasks. Mikolov et al.
(2011) showed that recurrent neural nets could be used as language models. The
idea of simplifying the hidden layer of these neural net language models to create
the skip-gram (and also CBOW) algorithms was proposed by Mikolov et al. (2013).
The negative sampling training algorithm was proposed in Mikolov et al. (2013a).
There are numerous surveys of static embeddings and their parameterizations (Bul-
linaria and Levy 2007, Bullinaria and Levy 2012, Lapesa and Evert 2014, Kiela and
Clark 2014, Levy et al. 2015).

See Manning et al. (2008) for a deeper understanding of the role of vectors in in-
formation retrieval, including how to compare queries with documents, more details
on tf-idf, and issues of scaling to very large datasets. See Kim (2019) for a clear and
comprehensive tutorial on word2vec. Cruse (2004) is a useful introductory linguistic
text on lexical semantics.

EXERCISES 31

Exercises

32 Chapter 6 • Vector Semantics and Embeddings

Agirre, E., Banea, C., Cardie, C., Cer, D., Diab, M.,
Gonzalez-Agirre, A., Guo, W., Lopez-Gazpio, I., Maritx-
alar, M., Mihalcea, R., Rigau, G., Uria, L., and Wiebe,
J. (2015). 2015 SemEval-2015 Task 2: Semantic Textual
Similarity, English, Spanish and Pilot on Interpretability.
SemEval-15.

Agirre, E., Diab, M., Cer, D., and Gonzalez-Agirre, A.
(2012). Semeval-2012 task 6: A pilot on semantic textual
similarity. SemEval-12.

Antoniak, M. and Mimno, D. (2018). Evaluating the stability
of embedding-based word similarities. TACL 6, 107–119.

Bellegarda, J. R. (1997). A latent semantic analysis frame-
work for large-span language modeling. EUROSPEECH.

Bellegarda, J. R. (2000). Exploiting latent semantic infor-
mation in statistical language modeling. Proceedings of the
IEEE 89(8), 1279–1296.

Bender, E. M. and Koller, A. (2020). Climbing towards
NLU: On meaning, form, and understanding in the age of
data. ACL.

Bengio, Y., Courville, A., and Vincent, P. (2013). Repre-
sentation learning: A review and new perspectives. IEEE
Transactions on Pattern Analysis and Machine Intelligence
35(8), 1798–1828.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003).
A neural probabilistic language model. Journal of machine
learning research 3(Feb), 1137–1155.

Bengio, Y., Schwenk, H., Senécal, J.-S., Morin, F., and Gau-
vain, J.-L. (2006). Neural probabilistic language models.
Innovations in Machine Learning, 137–186. Springer.

Bisk, Y., Holtzman, A., Thomason, J., Andreas, J., Bengio,
Y., Chai, J., Lapata, M., Lazaridou, A., May, J., Nisnevich,
A., Pinto, N., and Turian, J. (2020). Experience grounds
language.. arXiv preprint arXiv:2004.10151.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent
Dirichlet allocation. JMLR 3(5), 993–1022.

Blodgett, S. L., Barocas, S., Daumé III, H., and Wallach, H.
(2020). Language (technology) is power: A critical survey
of “bias” in NLP. ACL.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2017). Enriching word vectors with subword information.
TACL 5, 135–146.

Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V., and
Kalai, A. T. (2016). Man is to computer programmer as
woman is to homemaker? Debiasing word embeddings.
NeurIPS.

Bréal, M. (1897). Essai de Sémantique: Science des signifi-
cations. Hachette.

Budanitsky, A. and Hirst, G. (2006). Evaluating WordNet-
based measures of lexical semantic relatedness. Computa-
tional Linguistics 32(1), 13–47.

Bullinaria, J. A. and Levy, J. P. (2007). Extracting semantic
representations from word co-occurrence statistics: A com-
putational study. Behavior research methods 39(3), 510–
526.

Bullinaria, J. A. and Levy, J. P. (2012). Extracting semantic
representations from word co-occurrence statistics: stop-
lists, stemming, and SVD. Behavior research methods
44(3), 890–907.

Caliskan, A., Bryson, J. J., and Narayanan, A. (2017). Se-
mantics derived automatically from language corpora con-
tain human-like biases. Science 356(6334), 183–186.

Carlson, G. N. (1977). Reference to kinds in English. Ph.D.
thesis, University of Massachusetts, Amherst. Forward.

Church, K. W. and Hanks, P. (1989). Word association
norms, mutual information, and lexicography. ACL.

Church, K. W. and Hanks, P. (1990). Word association
norms, mutual information, and lexicography. Computa-
tional Linguistics 16(1), 22–29.

Clark, E. (1987). The principle of contrast: A constraint on
language acquisition. MacWhinney, B. (Ed.), Mechanisms
of language acquisition, 1–33. LEA.

Coccaro, N. and Jurafsky, D. (1998). Towards better integra-
tion of semantic predictors in statistical language modeling.
ICSLP.

Collobert, R. and Weston, J. (2007). Fast semantic extraction
using a novel neural network architecture. ACL.

Collobert, R. and Weston, J. (2008). A unified architecture
for natural language processing: Deep neural networks with
multitask learning. ICML.

Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. (2011). Natural language
processing (almost) from scratch. JMLR 12, 2493–2537.

Crawford, K. (2017). The trouble with bias. Keynote at
NeurIPS.

Cruse, D. A. (2004). Meaning in Language: an Introduc-
tion to Semantics and Pragmatics. Oxford University Press.
Second edition.

Dagan, I., Marcus, S., and Markovitch, S. (1993). Contextual
word similarity and estimation from sparse data. ACL.

Davies, M. (2012). Expanding horizons in historical linguis-
tics with the 400-million word Corpus of Historical Amer-
ican English. Corpora 7(2), 121–157.

Davies, M. (2015). The Wikipedia Corpus: 4.6 million arti-
cles, 1.9 billion words. Adapted from Wikipedia. https:
//www.english-corpora.org/wiki/.

Deerwester, S. C., Dumais, S. T., Furnas, G. W., Harshman,
R. A., Landauer, T. K., Lochbaum, K. E., and Streeter, L.
(1988). Computer information retrieval using latent seman-
tic structure: US Patent 4,839,853..

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas,
G. W., and Harshman, R. A. (1990). Indexing by latent
semantics analysis. JASIS 41(6), 391–407.

Ethayarajh, K., Duvenaud, D., and Hirst, G. (2019a). To-
wards understanding linear word analogies. ACL.

Ethayarajh, K., Duvenaud, D., and Hirst, G. (2019b). Under-
standing undesirable word embedding associations. ACL.

Fano, R. M. (1961). Transmission of Information: A Statis-
tical Theory of Communications. MIT Press.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan,
Z., Wolfman, G., and Ruppin, E. (2002). Placing search in
context: The concept revisited. ACM Transactions on In-
formation Systems 20(1), 116—-131.

Firth, J. R. (1957). A synopsis of linguistic theory 1930–
1955. Studies in Linguistic Analysis. Philological Society.
Reprinted in Palmer, F. (ed.) 1968. Selected Papers of J. R.
Firth. Longman, Harlow.

https://www.english-corpora.org/wiki/
https://www.english-corpora.org/wiki/

Exercises 33

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018).
Word embeddings quantify 100 years of gender and ethnic
stereotypes. Proceedings of the National Academy of Sci-
ences 115(16), E3635–E3644.

Girard, G. (1718). La justesse de la langue françoise: ou les
différentes significations des mots qui passent pour synon-
imes. Laurent d’Houry, Paris.

Giuliano, V. E. (1965). The interpretation of word
associations. Stevens, M. E., Giuliano, V. E., and
Heilprin, L. B. (Eds.), Statistical Association Meth-
ods For Mechanized Documentation. Symposium Pro-
ceedings. Washington, D.C., USA, March 17, 1964.
https://nvlpubs.nist.gov/nistpubs/Legacy/MP/

nbsmiscellaneouspub269.pdf.

Gladkova, A., Drozd, A., and Matsuoka, S. (2016). Analogy-
based detection of morphological and semantic relations
with word embeddings: what works and what doesn’t.
NAACL Student Research Workshop.

Glenberg, A. M. and Robertson, D. A. (2000). Sym-
bol grounding and meaning: A comparison of high-
dimensional and embodied theories of meaning. Journal
of memory and language 43(3), 379–401.

Gonen, H. and Goldberg, Y. (2019). Lipstick on a pig: De-
biasing methods cover up systematic gender biases in word
embeddings but do not remove them. NAACL HLT.

Gould, S. J. (1980). The Panda’s Thumb. Penguin Group.

Greenwald, A. G., McGhee, D. E., and Schwartz, J. L. K.
(1998). Measuring individual differences in implicit cog-
nition: the implicit association test. Journal of personality
and social psychology 74(6), 1464–1480.

Hamilton, W. L., Leskovec, J., and Jurafsky, D. (2016). Di-
achronic word embeddings reveal statistical laws of seman-
tic change. ACL.

Harris, Z. S. (1954). Distributional structure. Word 10, 146–
162. Reprinted in J. Fodor and J. Katz, The Structure of
Language, Prentice Hall, 1964 and in Z. S. Harris, Papers in
Structural and Transformational Linguistics, Reidel, 1970,
775–794.

Hellrich, J. and Hahn, U. (2016). Bad company—
Neighborhoods in neural embedding spaces considered
harmful. COLING.

Hill, F., Reichart, R., and Korhonen, A. (2015). Simlex-999:
Evaluating semantic models with (genuine) similarity esti-
mation. Computational Linguistics 41(4), 665–695.

Hjelmslev, L. (1969). Prologomena to a Theory of Lan-
guage. University of Wisconsin Press. Translated by Fran-
cis J. Whitfield; original Danish edition 1943.

Hofmann, T. (1999). Probabilistic latent semantic indexing.
SIGIR-99.

Huang, E. H., Socher, R., Manning, C. D., and Ng, A. Y.
(2012). Improving word representations via global context
and multiple word prototypes. ACL.

Jia, S., Meng, T., Zhao, J., and Chang, K.-W. (2020). Miti-
gating gender bias amplification in distribution by posterior
regularization. ACL.

Jones, M. P. and Martin, J. H. (1997). Contextual spelling
correction using latent semantic analysis. ANLP.

Joos, M. (1950). Description of language design. JASA 22,
701–708.

Jurafsky, D. (2014). The Language of Food. W. W. Norton,
New York.

Jurgens, D., Mohammad, S. M., Turney, P., and Holyoak, K.
(2012). SemEval-2012 task 2: Measuring degrees of rela-
tional similarity. *SEM 2012.

Katz, J. J. and Fodor, J. A. (1963). The structure of a seman-
tic theory. Language 39, 170–210.

Kiela, D. and Clark, S. (2014). A systematic study of seman-
tic vector space model parameters. EACL 2nd Workshop on
Continuous Vector Space Models and their Compositional-
ity (CVSC).

Kim, E. (2019). Optimize computational efficiency of skip-
gram with negative sampling. https://aegis4048.

github.io/optimize_computational_efficiency_

of_skip-gram_with_negative_sampling.
Lake, B. M. and Murphy, G. L. (2020). Word meaning in
minds and machines..

Landauer, T. K. and Dumais, S. T. (1997). A solution to
Plato’s problem: The Latent Semantic Analysis theory of
acquisition, induction, and representation of knowledge.
Psychological Review 104, 211–240.

Landauer, T. K., Laham, D., Rehder, B., and Schreiner, M. E.
(1997). How well can passage meaning be derived without
using word order? A comparison of Latent Semantic Anal-
ysis and humans. COGSCI.

Lapesa, G. and Evert, S. (2014). A large scale evaluation
of distributional semantic models: Parameters, interactions
and model selection. TACL 2, 531–545.

Lee, D. D. and Seung, H. S. (1999). Learning the parts
of objects by non-negative matrix factorization. Nature
401(6755), 788–791.

Levy, O. and Goldberg, Y. (2014a). Dependency-based word
embeddings. ACL.

Levy, O. and Goldberg, Y. (2014b). Linguistic regularities in
sparse and explicit word representations. CoNLL.

Levy, O. and Goldberg, Y. (2014c). Neural word embedding
as implicit matrix factorization. NeurIPS.

Levy, O., Goldberg, Y., and Dagan, I. (2015). Improving dis-
tributional similarity with lessons learned from word em-
beddings. TACL 3, 211–225.

Li, J., Chen, X., Hovy, E. H., and Jurafsky, D. (2015). Visu-
alizing and understanding neural models in NLP. NAACL
HLT.

Lin, Y., Michel, J.-B., Lieberman Aiden, E., Orwant, J.,
Brockman, W., and Petrov, S. (2012). Syntactic annotations
for the google books ngram corpus. ACL.

Linzen, T. (2016). Issues in evaluating semantic spaces using
word analogies. 1st Workshop on Evaluating Vector-Space
Representations for NLP.

Luhn, H. P. (1957). A statistical approach to the mechanized
encoding and searching of literary information. IBM Jour-
nal of Research and Development 1(4), 309–317.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). In-
troduction to Information Retrieval. Cambridge.

Mikolov, T., Chen, K., Corrado, G. S., and Dean, J.
(2013). Efficient estimation of word representations in vec-
tor space. ICLR 2013.

Mikolov, T., Kombrink, S., Burget, L., Černockỳ, J. H., and
Khudanpur, S. (2011). Extensions of recurrent neural net-
work language model. ICASSP.

https://nvlpubs.nist.gov/nistpubs/Legacy/MP/nbsmiscellaneouspub269.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/MP/nbsmiscellaneouspub269.pdf
https://aegis4048.github.io/optimize_computational_efficiency_of_skip-gram_with_negative_sampling
https://aegis4048.github.io/optimize_computational_efficiency_of_skip-gram_with_negative_sampling
https://aegis4048.github.io/optimize_computational_efficiency_of_skip-gram_with_negative_sampling

34 Chapter 6 • Vector Semantics and Embeddings

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013a). Distributed representations of words and
phrases and their compositionality. NeurIPS.

Mikolov, T., Yih, W.-t., and Zweig, G. (2013b). Linguis-
tic regularities in continuous space word representations.
NAACL HLT.

Niwa, Y. and Nitta, Y. (1994). Co-occurrence vectors from
corpora vs. distance vectors from dictionaries. ACL.

Nosek, B. A., Banaji, M. R., and Greenwald, A. G. (2002a).
Harvesting implicit group attitudes and beliefs from a
demonstration web site. Group Dynamics: Theory, Re-
search, and Practice 6(1), 101.

Nosek, B. A., Banaji, M. R., and Greenwald, A. G. (2002b).
Math=male, me=female, therefore math 6= me. Journal of
personality and social psychology 83(1), 44.

Osgood, C. E., Suci, G. J., and Tannenbaum, P. H. (1957).
The Measurement of Meaning. University of Illinois Press.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. EMNLP.

Peterson, J. C., Chen, D., and Griffiths, T. L. (2020). Par-
allelograms revisited: Exploring the limitations of vector
space models for simple analogies. Cognition 205.

Pilehvar, M. T. and Camacho-Collados, J. (2019). WiC:
the word-in-context dataset for evaluating context-sensitive
meaning representations. NAACL HLT.

Rehder, B., Schreiner, M. E., Wolfe, M. B. W., Laham, D.,
Landauer, T. K., and Kintsch, W. (1998). Using Latent Se-
mantic Analysis to assess knowledge: Some technical con-
siderations. Discourse Processes 25(2-3), 337–354.

Rohde, D. L. T., Gonnerman, L. M., and Plaut, D. C. (2006).
An improved model of semantic similarity based on lexical
co-occurrence. CACM 8, 627–633.

Rumelhart, D. E. and Abrahamson, A. A. (1973). A model
for analogical reasoning. Cognitive Psychology 5(1), 1–28.

Salton, G. (1971). The SMART Retrieval System: Experi-
ments in Automatic Document Processing. Prentice Hall.

Schone, P. and Jurafsky, D. (2000). Knowlege-free induction
of morphology using latent semantic analysis. CoNLL.

Schone, P. and Jurafsky, D. (2001a). Is knowledge-free in-
duction of multiword unit dictionary headwords a solved
problem?. EMNLP.

Schone, P. and Jurafsky, D. (2001b). Knowledge-free induc-
tion of inflectional morphologies. NAACL.

Schütze, H. (1992). Dimensions of meaning. Proceedings of
Supercomputing ’92. IEEE Press.

Schütze, H. (1997). Ambiguity Resolution in Language
Learning – Computational and Cognitive Models. CSLI,
Stanford, CA.

Schütze, H., Hull, D. A., and Pedersen, J. (1995). A com-
parison of classifiers and document representations for the
routing problem. SIGIR-95.

Schütze, H. and Pedersen, J. (1993). A vector model for syn-
tagmatic and paradigmatic relatedness. 9th Annual Confer-
ence of the UW Centre for the New OED and Text Research.

Sparck Jones, K. (1972). A statistical interpretation of term
specificity and its application in retrieval. Journal of Doc-
umentation 28(1), 11–21.

Sparck Jones, K. (1986). Synonymy and Semantic Classifica-
tion. Edinburgh University Press, Edinburgh. Republication
of 1964 PhD Thesis.

Switzer, P. (1965). Vector images in document retrieval.
Stevens, M. E., Giuliano, V. E., and Heilprin, L. B. (Eds.),
Statistical Association Methods For Mechanized Docu-
mentation. Symposium Proceedings. Washington, D.C.,
USA, March 17, 1964. https://nvlpubs.nist.gov/
nistpubs/Legacy/MP/nbsmiscellaneouspub269.

pdf.

Turian, J., Ratinov, L., and Bengio, Y. (2010). Word
representations: a simple and general method for semi-
supervised learning. ACL.

Turney, P. D. and Littman, M. L. (2005). Corpus-based learn-
ing of analogies and semantic relations. Machine Learning
60(1-3), 251–278.

van der Maaten, L. and Hinton, G. E. (2008). Visualizing
high-dimensional data using t-sne. JMLR 9, 2579–2605.

Wierzbicka, A. (1992). Semantics, Culture, and Cognition:
University Human Concepts in Culture-Specific Configura-
tions. Oxford University Press.

Wierzbicka, A. (1996). Semantics: Primes and Universals.
Oxford University Press.

Wittgenstein, L. (1953). Philosophical Investigations.
(Translated by Anscombe, G.E.M.). Blackwell.

Zhao, J., Wang, T., Yatskar, M., Ordonez, V., and Chang, K.-
W. (2017). Men also like shopping: Reducing gender bias
amplification using corpus-level constraints. EMNLP.

Zhao, J., Zhou, Y., Li, Z., Wang, W., and Chang, K.-
W. (2018). Learning gender-neutral word embeddings.
EMNLP.

https://nvlpubs.nist.gov/nistpubs/Legacy/MP/nbsmiscellaneouspub269.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/MP/nbsmiscellaneouspub269.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/MP/nbsmiscellaneouspub269.pdf

How Can We Accelerate Progress Towards Human-like Linguistic
Generalization?

Tal Linzen
Department of Cognitive Science

Johns Hopkins University
tal.linzen@jhu.edu

Abstract

This position paper describes and critiques the
Pretraining-Agnostic Identically Distributed
(PAID) evaluation paradigm, which has be-
come a central tool for measuring progress
in natural language understanding. This
paradigm consists of three stages: (1) pre-
training of a word prediction model on a cor-
pus of arbitrary size; (2) fine-tuning (transfer
learning) on a training set representing a classi-
fication task; (3) evaluation on a test set drawn
from the same distribution as that training set.
This paradigm favors simple, low-bias archi-
tectures, which, first, can be scaled to process
vast amounts of data, and second, can capture
the fine-grained statistical properties of a par-
ticular data set, regardless of whether those
properties are likely to generalize to examples
of the task outside the data set. This contrasts
with humans, who learn language from several
orders of magnitude less data than the systems
favored by this evaluation paradigm, and gen-
eralize to new tasks in a consistent way. We
advocate for supplementing or replacing PAID
with paradigms that reward architectures that
generalize as quickly and robustly as humans.

1 Introduction

The special session of the 2020 Annual Meeting
of Association for Computational Linguistics in-
vites us to take stock of the progress made in the
field in the last few years. There is no question
that we have made significant progress in a range
of applications: current machine translation sys-
tems for high-resource languages, for example, are
undeniably better than those we had a decade ago.
This opinion piece will focus on a different ques-
tion: are we making progress towards the classic
goal of mimicking human linguistic abilities in
machines—towards a model that acquires language
as efficiently as humans, and generalizes it as hu-
mans do to new structures and contexts (“tasks”)?

I will argue that an evaluation paradigm that
has rapidly established itself as one of the main
tools for measuring progress in the field—a
paradigm I will term, for want of a catchier name,
Pretraining-Agnostic Identically Distributed evalu-
ation (PAID)—encourages progress in a direction
that is at best orthogonal to the goal of human-like
generalization. Because it does not consider sam-
ple efficiency, this approach rewards models that
can be trained on massive amounts of data, sev-
eral orders of magnitude more than a human can
expect to be exposed to. And because benchmark
scores are computed on test sets drawn from the
same distribution as their respective training sets,
this paradigm favors models that excel in capturing
the statistical patterns of particular data sets over
models that generalize as a human would.

2 Human-like Generalization

Humans learn language from much more limited
exposure than most contemporary NLP systems.
An analysis of recordings taken in the environment
of the child of an MIT professor between the ages
of 9 and 24 months found that the child heard or
produced approximately eight million words over
this 15-month period (Roy et al., 2015). Children
in lower socioeconomic status families in West-
ern societies receive significantly less linguistic
input than that (around 3 million words per year,
Hart and Risley 1995); even more strikingly, mem-
bers of the Tsimane community in Bolivia spend
about 15 times less time per hour speaking to their
children than do highly educated American fam-
ilies (Cristia et al., 2019). If NLP systems were
as sample-efficient as Tsimane children, far fewer
languages would be considered “low-resource lan-
guages”.

Despite the limited amount of exposure to their
language, humans generalize their linguistic knowl-

ar
X

iv
:2

00
5.

00
95

5v
1

 [
cs

.C
L

]
 3

 M
ay

 2
02

0

edge in a consistent way to structures that are in-
frequent or non-existent in corpora (Sprouse et al.,
2013), and quickly learn to do new things with
language (what we sometimes refer to in NLP as
“tasks”). As I discuss below, this is not the case
for current deep learning systems: when tested
on cases sampled from a distribution that differs
from the one they were trained on, their behavior
is unpredictable and inconsistent with that of hu-
mans (Jia and Liang, 2017; McCoy et al., 2019b),
and they require extensive instruction on each new
task (Yogatama et al., 2019). Humans’ rapid and
consistent generalization abilities rely on powerful
inductive biases, which likely arise from a com-
bination of innate building blocks and experience
with diverse learning problems (Lake et al., 2017).

Systems that generalize like humans would be
useful not only for NLP, but also for the scientific
study of human language acquisition and process-
ing (Keller, 2010; Dupoux, 2018). But, as I will
argue in the next two sections, it is unclear whether
our dominant evaluation paradigms are getting us
closer to this goal.

3 Pretraining-Agnostic Evaluation

Over the last two years, deep learning systems
have obtained rapidly increasing scores on lan-
guage understanding benchmarks such as GLUE
(Wang et al., 2019b) or SuperGLUE (Wang et al.,
2019a). These benchmarks aggregate multiple su-
pervised classification tasks—such as sentiment
analysis, linguistic acceptability judgments, or en-
tailment detection—and collate the scores obtained
on those tasks into a leaderboard, with a single
headline score for each model averaging its scores
on each individual task. For each of these classi-
fication tasks, a data set that was generated by a
particular process, often involving crowdsourcing,
is randomly split into two: a training set, which the
system is allowed to observe, and a held-out test
set, on which it is evaluated.

A standard recipe has emerged for achiev-
ing high scores on such benchmarks. A neural
network—typically, one based on the transformer
architecture (Vaswani et al., 2017)—is pretrained
on a denoising objective, such as filling in one
or more blanks in a vast number of sentences.
This network is then fine-tuned (performs trans-
fer learning) on the benchmark’s supervised tasks,
each of which include a much smaller number
of training examples than the pretraining corpus

(Howard and Ruder, 2018; Peters et al., 2018). The
T5 model (Raffel et al., 2019)—the system that
boasted the highest score on SuperGLUE at the
time of writing—achieved an average accuracy of
88.9% on this benchmark, slightly lower than that
of untrained human annotators (89.8%), and more
than 20 percentage points higher than the score
obtained just a few months earlier by BERT (De-
vlin et al., 2019; Wang et al., 2019a). This jump
in accuracy does not reflect significant modeling
innovations: both BERT and T5 are transformers
trained on similar objectives that differ primarily
in their scale.

When ranking systems, leaderboards such as Su-
perGLUE do not take into account the amount of
pretraining data provided to each model. Pretrain-
ing corpora are not standardized, and the amount
of pretraining data is not always easy to discern
from the papers reporting on such systems. Here is
my attempt to reconstruct the recent evolution of
pretraining corpus sizes.1 BERT, uploaded to arXiv
in October 2018, was trained on 3.3 billion words;
XLNet (Yang et al., June 2019), was trained on
78 GB of text, or approximately 13 billion words;
RoBERTa (Liu et al., July 2019) was trained on
160 GB of text, or around 28 billion words; and T5
(Raffel et al., October 2019) was trained on 750 GB
of text, or approximately 130 billion words.

When we rely on a single leaderboard to com-
pare systems trained on corpora with such a large
range of sizes, we are not comparing architectures,
but rather interactions of architectures, corpus sizes,
and computational resources available for training.
While this may be a useful comparison for an engi-
neer who seeks to plug an existing trained model
into a larger pipeline, this approach is unlikely to
advance us towards the goal advocated in this ar-
ticle. The 130 billion word corpus that T5 was
trained on is much larger than the corpus that a
human can expect to be exposed to before adult-
hood (fewer than 100 million words, see Section 2).
But a leaderboard that evaluates only bottom-line
transfer learning accuracy inherently disadvantages
a sample-efficient model pretrained on a few dozen
million words compared to a model such as T5.
For all we know, it is possible that architectures

1Corpus sizes reported in massive-corpus pretraining pa-
pers are often specified in gigabytes, or number of model-
specific subword units, instead of measures such as number of
words that are easier to compare across articles. My estimates
are based on an average English word length of 4.7 characters
and a space or punctuation mark after each word.

rewarded by PAID, such as massive transformers,
only work well when given an amount of data that
is orders of magnitude greater than that available
to humans. If that is the case, our exploration of
the space of possible models could be going in a
direction that is orthogonal to the one that might
lead us to models that can imitate humans’ sample
efficiency (one example of such direction is neural
networks with explicit symbolic structure, which
are harder to scale up, but perform well on smaller
data sets: Kuncoro et al. 2018; Wilcox et al. 2019).

4 Identically Distributed Training Set
and Test Set

The remaining two letters of the PAID acronym
refer to the practice of evaluating success on classi-
fication tasks using training and test set generated
using the same process. Typically, a single data set
is collected and is randomly split into a training
portion and test portion. While this may seem rea-
sonable from a machine learning perspective, it has
become clear that this form of evaluation obscures
possible mismatches between the generalizations
that we as humans believe a system performing the
task should acquire, and the generalizations that
the system in fact extracts from the data.

Consider, for example, crowdsourced natural lan-
guage inference (NLI) data sets, in which workers
are asked to generate a sentence that contradicts the
prompt shown to them (Bowman et al., 2015). One
strategy that crowdworkers adopt when generating
a contradiction is to simply negate the prompt, for
example by inserting the word not. This strategy
is often effective: the man is sleeping contradicts
the man is not sleeping. Conversely, it is much less
likely that the worker would use the word not when
asked to generate a sentence that is entailed by the
prompt. Taken together, such worker choices lead
to a strong correlation between the presence of the
word not in the hypothesis and the label CONTRA-
DICTION. It would be surprising if low-bias learn-
ers such as neural networks did not notice such a
correlation, and indeed they do, leading them to
respond CONTRADICTION with high probability
any time the hypothesis contains a negation word
(Gururangan et al., 2018; Poliak et al., 2018). Of
course, relying on the presence of the word not is
not a generally valid inference strategy; for exam-
ple, the man is awake entails, rather than contra-
dicts, the man is not sleeping.

Numerous generalization issues of this sort have

been documented, for NLI and for other tasks.
In the syntactic domain, McCoy et al. (2019b)
showed that BERT fine-tuned on the crowdsourced
MultiNLI data set (Williams et al., 2018) achieves
high accuracy on the MultiNLI test set, but shows
very little sensitivity to word order when tested on
constructed examples that require an analysis of the
structure of the sentence; for example, this model
is likely to conclude that the detective followed the
suspect entails the suspect followed the detective.

In short, the models, unable to discern the inten-
tions of the data set’s designers, happily recapitu-
late any statistical patterns they find in the train-
ing data. With a random training/test split, any
correlation observed in the training set will hold
approximately for the test set, and a system that
learned it could achieve high test set accuracy. And
indeed, we have models that excel in the PAID
paradigm, even exceeding the performance of hu-
man annotators on the test portion of the corpus
used for fine-tuning (Nangia and Bowman, 2019),
but, when tested on controlled examples, make mis-
takes that a human would rarely make.2

The generalizations that a statistical model ex-
tracts from the data are always the result of the
interaction between the model’s inductive biases
and the statistical properties of the data set. In
the case of BERT’s insensitivity to word order in
NLI, the model does not seem to have a strong in-
ductive bias one way or another; its sensitivity to
word order varies widely depending on the weight
initialization of the fine-tuning classifier and the
order of the fine-tuning examples (McCoy et al.,
2019a), and its syntactic behavior in the inference
task can be made to be more consistent with hu-
man intuitions if the training set is augmented to
include a larger number of examples illustrating the
importance of word order (Min et al., 2020). While
BERT is capable of learning to use syntax for in-
ference given a sufficiently strong signal, then, it
prefers to use other heuristics, if possible. This con-
trasts with human-like generalization in this task,
which would likely start from the assumption that
any language understanding task should recruit our

2Comparisons between human annotators and transformers
are arguably unfair: before observing the test set, the models
receive hundreds of thousands of examples of the output of
the data-generating process. This contrasts with humans an-
notators, who need to perform the task based on their general
language understanding skills. It would be an entertaining
though somewhat cruel experiment to repeat the comparison
after matching the amount of exposure that humans and pre-
trained transformers receive to the quirks of the data set.

knowledge of syntax: it would most likely be dif-
ficult to convince humans to ignore syntax when
understanding a sentence, as BERT does.

5 The Generalization Leaderboard

What is the way forward? My goal is not to argue
that there is no value to the leaderboard approach,
where a single number or a small set of num-
bers can be used to quickly compare models. De-
spite the drawbacks of this approach—in particular,
its tendency to obscure the fine-grained strengths
and weaknesses of particular models, as I discuss
below—hill climbing on a metric can enable a pro-
ductive division of labor between groups that de-
velop strong benchmarks, groups that propose new
models and inference methods, and groups that
have the engineering skills and computational re-
sources necessary to train those models on the num-
ber of GPUs they require to thrive.

Instead, my argument is that the current division
of labor is unproductive. At the risk of belaboring
the mountaineering metaphor, one might say that
groups with access to engineering and computing
resources are climbing the PAID hill, while other
groups, which document the same models’ unreli-
able generalization behavior—or retrain them on
smaller data sets to produce the learning curves that
are often missing from engineering papers—are
climbing the interpretability track hill, producing
papers that are more and more sophisticated and
well-respected but do not influence the trajectory
of mainstream model development. This section
describes some design decisions that can lead to
better alignment between the two sets of research
groups. Many of these points are not new—in fact,
some of these properties were standard in evalua-
tion paradigms 10 or 20 years ago—but are worth
revisiting given recent evaluation trends.

Standard, moderately sized pretraining cor-
pora. To complement current evaluation ap-
proaches, we should develop standard metrics that
promote sample efficiency. At a minimum, we
should standardize the pretraining corpus across all
models, as some CoNLL shared tasks do. Multi-
ple leaderboards can be created that will measure
performance on increasingly small subsets of this
pretraining corpus size—including ones that are
smaller than 100 million words. To make stronger
contact with the human language acquisition litera-
ture, a leaderboard could compare models on their
ability to learn various linguistic generalizations

from the CHILDES repository of child-directed
speech (MacWhinney, 2000).

Independent evaluation in multiple languages.
A model can be sample-efficient for English, but
not for other languages. We should ensure that
our architectures, like humans learners, are not
optimized for English (Bender, 2011). To do so,
we should develop matched training corpora and
benchmarks for multiple languages. A compos-
ite score could reflect average performance across
languages (Hu et al., 2020). In keeping with our
goal of mimicking humans, who are known for
their ability to learn any language without learning
English first, we should train and test the models
separately on each language, instead of focusing
on transfer from English to other languages—an
important, but distinct, research direction.

What about grounding? In response to stud-
ies comparing training corpus sizes between deep
learning models and humans (e.g., van Schijndel
et al. 2019), it is sometimes pointed out that hu-
mans do not learn language from text alone—we
also observe the world and interact with it. This,
according to this argument, renders the compari-
son meaningless. While the observation that chil-
dren learn from diverse sources of information is
certainly correct, it is unclear whether any plau-
sible amount of non-linguistic input could offset
the difference between 50 million words (humans)
and 130 billion words (T5). Instead of taking this
observation as a carte blanche to ignore sample
efficiency, then, we should address it experimen-
tally, by collecting multimodal data sets (Suhr et al.,
2019; Hudson and Manning, 2019), developing
models that learn from them efficiently, and using
the Generalization Leaderboard to measure how
effective this signal is in aligning the model’s gen-
eralization behavior with that of humans.

Normative evaluation. Performance metrics
should be derived not from samples from the same
distribution as the fine-tuning set, but from what we
might term normative evaluation: expert-created
controlled data sets that capture our intuitions about
how an agent should perform the task (Marelli et al.,
2014; Marvin and Linzen, 2018; Warstadt et al.,
2019; Ettinger, 2020). Such data sets should be
designed to be difficult to solve using heuristics
that ignore linguistic principles. While experts are
more expensive than crowdworkers, the payoff in
terms of data set quality is likely to be consider-

able. In parallel, we should continue to explore
approaches such as adversarial filtering that may
limit crowdworkers’ ability to resort to shortcuts
(Zellers et al., 2018; Nie et al., 2019).

Normative evaluation is related to but distinct
from adversarial evaluation. Adversarial attacks
usually focus on a specific trained model, starting
from an example that the model classifies correctly,
and perturbing it in ways that, under the normative
definition of the task, should not affect the classi-
fier’s decision. For example, adversarial evaluation
for a given question answering system may take an
existing instance from the data set, and find an irrel-
evant sentence that, when added to the paragraph
that the question is about, changes the system’s re-
sponse (Jia and Liang, 2017). By contrast, the goal
of the normative evaluation paradigm is not to fool
a particular system by exploiting its weaknesses,
but simply to describe the desirable performance
on the task in a unambiguous way.

Test-only benchmarks. A central point that
bears repeating is that we should not fine-tune our
models on the evaluation benchmark. Despite our
best efforts, we may never be able to create a bench-
mark that does not have unintended statistical reg-
ularities. Fine-tuning on the benchmark may clue
the model into such unintended correlations (Liu
et al., 2019a). Any pretrained model will still need
to be taught how to perform the transfer task, of
course, but this should be done using a separate
data set, perhaps one of those that are currently ag-
gregated in GLUE. Either way, the Generalization
Leaderboard should favor models that, like humans,
are able to perform tasks with minimal instruction
(few-shot learning, Yogatama et al. 2019).

What about efficiency? The PAID paradigm is
agnostic not only to pretraining resources, but
also to properties of the model such as the num-
ber of parameters, the speed of inference, or the
number of GPU hours required to train it. These
implementational-level factors (Marr, 1982) are or-
thogonal to our generalization concerns, which are
formulated at the level of input–output correspon-
dence. If efficiency is a concern, however, such
properties can be optimized directly by modifying
pretraining-agnostic benchmarks to take them into
account (Schwartz et al., 2019).

Breakdown by task and phenomenon. Bench-
marks should always provide a detailed breakdown
of accuracy by task and linguistic phenomenon:

a model that obtains mediocre average perfor-
mance, but captures a particular phenomenon very
well, can be of considerable interest. Discourag-
ingly, even though GLUE reports such task-specific
scores—and even includes diagnostic examples
created by experts—these finer-grain results have
failed to gain the same traction as the headline
GLUE benchmark. Other than exhorting authors to
pay greater attention to error analysis in particular
and linguistics in general—granted, an exhortation
without which no ACL position piece can be con-
sidered truly complete—we should insist, when
reviewing papers, that authors include a complete
breakdown by phenomenon as an appendix, and
discuss noteworthy patterns in the results. For au-
thors that strongly prefer that their paper include
a headline number that is larger than numbers re-
ported in previous work, the leaderboard could of-
fer alternative headline metrics that would reward
large gains in one category even when those are
offset by small losses in others.

6 Conclusion

I have described the currently popular Pretraining-
Agnostic Identically Distributed paradigm, which
selects for models that can be trained easily on an
unlimited amount of data, and that excel in captur-
ing arbitrary statistical patterns in a fine-tuning data
set. While such models have considerable value in
applications, I have advocated for a parallel evalu-
ation ecosystem—complete with a leaderboard, if
one will motivate progress—that will reward mod-
els for their ability to generalize in a human-like
way. Human-like inductive biases will improve
our models’ ability to learn language structure and
new tasks from limited data, and will align the
models’ generalization behavior more closely with
human expectations, reducing the allure of superfi-
cial heuristics that do not follow linguistic structure,
and the prevalence of adversarial examples, where
changes to the input that are insignificant from a
human perspective turn out to affect the network’s
behavior in an undesirable way.

References
Emily M. Bender. 2011. On achieving and evaluating

language-independence in NLP. Linguistic Issues in
Language Technology, 6(3):1–26.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.

http://journals.linguisticsociety.org/elanguage/lilt/article/view/2624.html
http://journals.linguisticsociety.org/elanguage/lilt/article/view/2624.html
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075

In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Alejandrina Cristia, Emmanuel Dupoux, Michael Gur-
ven, and Jonathan Stieglitz. 2019. Child-directed
speech is infrequent in a forager-farmer popula-
tion: a time allocation study. Child Development,
90(3):759–773.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Emmanuel Dupoux. 2018. Cognitive science in the
era of artificial intelligence: A roadmap for reverse-
engineering the infant language-learner. Cognition,
173:43–59.

Allyson Ettinger. 2020. What BERT is not: Lessons
from a new suite of psycholinguistic diagnostics for
language models. Transactions of the Association
for Computational Linguistics, 8:34–48.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel Bowman, and Noah A.
Smith. 2018. Annotation artifacts in natural lan-
guage inference data. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 107–112. Association for Computational Lin-
guistics.

Betty Hart and Todd R. Risley. 1995. Meaningful dif-
ferences in the everyday experience of young Ameri-
can children. Baltimore: P. H. Brookes.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. Xtreme: A massively multilingual multi-task
benchmark for evaluating cross-lingual generaliza-
tion. arXiv preprint 2003.11080.

Drew A. Hudson and Christopher D. Manning. 2019.
GQA: A new dataset for real-world visual reason-
ing and compositional question answering. Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021–2031. Association for Computational Linguis-
tics.

Frank Keller. 2010. Cognitively plausible models of
human language processing. In Proceedings of the
ACL 2010 Conference Short Papers, pages 60–67,
Uppsala, Sweden. Association for Computational
Linguistics.

Adhiguna Kuncoro, Chris Dyer, John Hale, Dani Yo-
gatama, Stephen Clark, and Phil Blunsom. 2018.
LSTMs can learn syntax-sensitive dependencies
well, but modeling structure makes them better. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1426–1436. Association for
Computational Linguistics.

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenen-
baum, and Samuel J. Gershman. 2017. Building ma-
chines that learn and think like people. Behavioral
and Brain Sciences, 40.

Nelson F. Liu, Roy Schwartz, and Noah A. Smith.
2019a. Inoculation by fine-tuning: A method for
analyzing challenge datasets. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 2171–2179, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint 1907.11692.

Brian MacWhinney. 2000. The CHILDES Project:
Tools for Analyzing Talk. Third edition. Lawrence
Erlbaum Associates, Mahwah, NJ.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zampar-
elli. 2014. A SICK cure for the evaluation of compo-
sitional distributional semantic models. In Proceed-
ings of the Ninth International Conference on Lan-
guage Resources and Evaluation (LREC’14), pages
216–223, Reykjavik, Iceland. European Language
Resources Association (ELRA).

David Marr. 1982. Vision: A computational investiga-
tion into the human representation and processing of
visual information. New York: Freeman.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192–1202,
Brussels, Belgium. Association for Computational
Linguistics.

https://doi.org/10.1111/cdev.12974
https://doi.org/10.1111/cdev.12974
https://doi.org/10.1111/cdev.12974
https://www.aclweb.org/anthology/N19-1423/
https://www.aclweb.org/anthology/N19-1423/
https://www.aclweb.org/anthology/N19-1423/
https://doi.org/10.1016/j.cognition.2017.11.008
https://doi.org/10.1016/j.cognition.2017.11.008
https://doi.org/10.1016/j.cognition.2017.11.008
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://www.aclweb.org/anthology/N18-2017/
https://www.aclweb.org/anthology/N18-2017/
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://arxiv.org/abs/2003.11080
https://arxiv.org/abs/2003.11080
https://arxiv.org/abs/2003.11080
https://arxiv.org/abs/1902.09506
https://arxiv.org/abs/1902.09506
http://aclweb.org/anthology/D17-1215
http://aclweb.org/anthology/D17-1215
https://www.aclweb.org/anthology/P10-2012
https://www.aclweb.org/anthology/P10-2012
https://www.aclweb.org/anthology/P18-1132/
https://www.aclweb.org/anthology/P18-1132/
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.1017/S0140525X16001837
https://www.aclweb.org/anthology/N19-1225
https://www.aclweb.org/anthology/N19-1225
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151

R. Thomas McCoy, Junghyun Min, and Tal Linzen.
2019a. Berts of a feather do not generalize together:
Large variability in generalization across models
with similar test set performance.

R. Thomas McCoy, Ellie Pavlick, and Tal Linzen.
2019b. Right for the wrong reasons: Diagnosing
syntactic heuristics in natural language inference.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
3428–3448, Florence, Italy. Association for Compu-
tational Linguistics.

Junghyun Min, R. Thomas McCoy, Dipanjan Das,
Emily Pitler, and Tal Linzen. 2020. Syntactic
data augmentation increases robustness to inference
heuristics. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
Seattle, Washington. Association for Computational
Linguistics.

Nikita Nangia and Samuel R. Bowman. 2019. Human
vs. muppet: A conservative estimate of human per-
formance on the GLUE benchmark. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4566–4575, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Yixin Nie, Adina Williams, Emily Dinan, Mohit
Bansal, Jason Weston, and Douwe Kiela. 2019. Ad-
versarial NLI: A new benchmark for natural lan-
guage understanding. arXiv preprint 1910.14599.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237. Association for Computational Linguistics.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language in-
ference. In Proceedings of the Seventh Joint Con-
ference on Lexical and Computational Semantics,
pages 180–191. Association for Computational Lin-
guistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint 1910.10683.

Brandon C. Roy, Michael C. Frank, Philip DeCamp,
Matthew Miller, and Deb Roy. 2015. Predicting the
birth of a spoken word. Proceedings of the National
Academy of Sciences, 112(41):12663–12668.

Marten van Schijndel, Aaron Mueller, and Tal Linzen.
2019. Quantity doesn’t buy quality syntax with
neural language models. In Proceedings of the

2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5831–5837, Hong Kong,
China. Association for Computational Linguistics.

Roy Schwartz, Jesse Dodge, and Noah A. Smith. 2019.
Green AI. arXiv preprint 1907.10597.

Jon Sprouse, Carson T Schütze, and Diogo Almeida.
2013. A comparison of informal and formal accept-
ability judgments using a random sample from Lin-
guistic Inquiry 2001–2010. Lingua, 134:219–248.

Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang,
Huajun Bai, and Yoav Artzi. 2019. A corpus for
reasoning about natural language grounded in pho-
tographs. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics,
pages 6418–6428, Florence, Italy. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. 2019a. SuperGLUE:
A stickier benchmark for general-purpose language
understanding systems. arXiv preprint 1905.00537.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2019. BLiMP: A benchmark of lin-
guistic minimal pairs for English. arXiv preprint
1912.00582.

Ethan Wilcox, Peng Qian, Richard Futrell, Miguel
Ballesteros, and Roger Levy. 2019. Structural super-
vision improves learning of non-local grammatical
dependencies. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3302–3312, Minneapolis, Minnesota.
Association for Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American

http://arxiv.org/abs/1911.02969
http://arxiv.org/abs/1911.02969
http://arxiv.org/abs/1911.02969
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://arxiv.org/abs/2004.11999
https://arxiv.org/abs/2004.11999
https://arxiv.org/abs/2004.11999
https://doi.org/10.18653/v1/P19-1449
https://doi.org/10.18653/v1/P19-1449
https://doi.org/10.18653/v1/P19-1449
https://arxiv.org/abs/1910.14599
https://arxiv.org/abs/1910.14599
https://arxiv.org/abs/1910.14599
https://www.aclweb.org/anthology/N18-1202/
https://www.aclweb.org/anthology/N18-1202/
https://www.aclweb.org/anthology/S18-2023/
https://www.aclweb.org/anthology/S18-2023/
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://doi.org/10.1073/pnas.1419773112
https://doi.org/10.1073/pnas.1419773112
https://www.aclweb.org/anthology/D19-1592/
https://www.aclweb.org/anthology/D19-1592/
https://arxiv.org/abs/1907.10597
https://doi.org/10.1016/j.lingua.2013.07.002
https://doi.org/10.1016/j.lingua.2013.07.002
https://doi.org/10.1016/j.lingua.2013.07.002
https://www.aclweb.org/anthology/P19-1644
https://www.aclweb.org/anthology/P19-1644
https://www.aclweb.org/anthology/P19-1644
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://arxiv.org/abs/1905.00537
http://arxiv.org/abs/1905.00537
http://arxiv.org/abs/1905.00537
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://arxiv.org/abs/1912.00582
https://arxiv.org/abs/1912.00582
https://www.aclweb.org/anthology/N19-1334/
https://www.aclweb.org/anthology/N19-1334/
https://www.aclweb.org/anthology/N19-1334/
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101

Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122. Association for
Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. XL-
Net: Generalized autoregressive pretraining for lan-
guage understanding. arXiv preprint 1906.08237.

Dani Yogatama, Cyprien de Masson d’Autume, Jerome
Connor, Tomas Kocisky, Mike Chrzanowski, Ling-
peng Kong, Angeliki Lazaridou, Wang Ling, Lei
Yu, Chris Dyer, et al. 2019. Learning and evalu-
ating general linguistic intelligence. arXiv preprint
1901.11373.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and
Yejin Choi. 2018. SWAG: A large-scale adversar-
ial dataset for grounded commonsense inference. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 93–
104, Brussels, Belgium. Association for Computa-
tional Linguistics.

https://arxiv.org/abs/1906.08237
https://arxiv.org/abs/1906.08237
https://arxiv.org/abs/1906.08237
https://arxiv.org/abs/1901.11373
https://arxiv.org/abs/1901.11373
https://doi.org/10.18653/v1/D18-1009
https://doi.org/10.18653/v1/D18-1009

Beyond Accuracy: Behavioral Testing of NLP Models with CheckList

Marco Tulio Ribeiro
Microsoft Research

marcotcr@microsoft.com

Tongshuang Wu
Univ. of Washington
wtshuang@cs.uw.edu

Carlos Guestrin
Univ. of Washington
guestrin@cs.uw.edu

Sameer Singh
Univ. of California, Irvine

sameer@uci.edu

Abstract

Although measuring held-out accuracy has
been the primary approach to evaluate general-
ization, it often overestimates the performance
of NLP models, while alternative approaches
for evaluating models either focus on individ-
ual tasks or on specific behaviors. Inspired
by principles of behavioral testing in software
engineering, we introduce CheckList, a task-
agnostic methodology for testing NLP mod-
els. CheckList includes a matrix of general
linguistic capabilities and test types that facil-
itate comprehensive test ideation, as well as a
software tool to generate a large and diverse
number of test cases quickly. We illustrate the
utility of CheckList with tests for three tasks,
identifying critical failures in both commercial
and state-of-art models. In a user study, a team
responsible for a commercial sentiment analy-
sis model found new and actionable bugs in
an extensively tested model. In another user
study, NLP practitioners with CheckList cre-
ated twice as many tests, and found almost
three times as many bugs as users without it.

1 Introduction

One of the primary goals of training NLP models
is generalization. Since testing “in the wild” is
expensive and does not allow for fast iterations,
the standard paradigm for evaluation is using train-
validation-test splits to estimate the accuracy of
the model, including the use of leader boards to
track progress on a task (Rajpurkar et al., 2016).
While performance on held-out data is a useful
indicator, held-out datasets are often not compre-
hensive, and contain the same biases as the training
data (Rajpurkar et al., 2018), such that real-world
performance may be overestimated (Patel et al.,
2008; Recht et al., 2019). Further, by summarizing
the performance as a single aggregate statistic, it
becomes difficult to figure out where the model is
failing, and how to fix it (Wu et al., 2019).

A number of additional evaluation approaches
have been proposed, such as evaluating robust-
ness to noise (Belinkov and Bisk, 2018; Rychalska
et al., 2019) or adversarial changes (Ribeiro et al.,
2018; Iyyer et al., 2018), fairness (Prabhakaran
et al., 2019), logical consistency (Ribeiro et al.,
2019), explanations (Ribeiro et al., 2016), diagnos-
tic datasets (Wang et al., 2019b), and interactive
error analysis (Wu et al., 2019). However, these
approaches focus either on individual tasks such
as Question Answering or Natural Language Infer-
ence, or on a few capabilities (e.g. robustness), and
thus do not provide comprehensive guidance on
how to evaluate models. Software engineering re-
search, on the other hand, has proposed a variety of
paradigms and tools for testing complex software
systems. In particular, “behavioral testing” (also
known as black-box testing) is concerned with test-
ing different capabilities of a system by validating
the input-output behavior, without any knowledge
of the internal structure (Beizer, 1995). While there
are clear similarities, many insights from software
engineering are yet to be applied to NLP models.

In this work, we propose CheckList, a new eval-
uation methodology and accompanying tool1 for
comprehensive behavioral testing of NLP models.
CheckList guides users in what to test, by provid-
ing a list of linguistic capabilities, which are appli-
cable to most tasks. To break down potential ca-
pability failures into specific behaviors, CheckList
introduces different test types, such as prediction
invariance in the presence of certain perturbations,
or performance on a set of “sanity checks.” Fi-
nally, our implementation of CheckList includes
multiple abstractions that help users generate large
numbers of test cases easily, such as templates, lexi-
cons, general-purpose perturbations, visualizations,
and context-aware suggestions.

1https://github.com/marcotcr/checklist

ar
X

iv
:2

00
5.

04
11

8v
1

 [
cs

.C
L

]
 8

 M
ay

 2
02

0

mailto:marcotcr@microsoft.com
mailto:wtshuang@cs.uw.edu
mailto:guestrin@cs.uw.edu
mailto:sameer@uci.edu
https://github.com/marcotcr/checklist

Test case Expected Predicted Pass?
Testing Negation with MFT

Template: I {NEGATION} {POS_VERB} the {THING}.

I can’t say I recommend the food. neg pos ︎X

I didn’t love the flight. neg neutral ︎X

Failure rate = 76.4%
Testing NER with INV

@AmericanAir thank you we got on a
different flight to [Chicago → Dallas]. inv ︎X

@VirginAmerica I can’t lose my luggage,
moving to [Brazil → Turkey] soon, ugh. inv ︎X

Failure rate = 20.8%
Testing Vocabulary with DIR

@AmericanAir service wasn't great. You
are lame. ↓ ︎X

@JetBlue why won't YOU help them?!
Ugh. I dread you. ↓ ︎X

Failure rate = 34.6%

Capability Min Func Test INVariance DIRectional
Vocabulary Fail. rate=15.0% 16.2% 34.6%

NER 0.0% 20.8%

%

N/A
Negation 76.4% N/A N/A

B
A

C

A

B

C

pos
neutral

Same pred. (inv) after removals / additions  

Labels: negative, positive, neutral

Sentiment monotonic decreasing (↓)

…

…

…

…

neutral
neg

neg
neutral

neg
neutral

Figure 1: CheckListing a commercial sentiment analy-
sis model (). Tests are structured as a conceptual ma-
trix with capabilities as rows and test types as columns
(examples of each type in A, B and C).

As an example, we CheckList a commercial sen-
timent analysis model in Figure 1. Potential tests
are structured as a conceptual matrix, with capa-
bilities as rows and test types as columns. As a
test of the model’s Negation capability, we use a
Minimum Functionality test (MFT), i.e. simple
test cases designed to target a specific behavior
(Figure 1A). We generate a large number of sim-
ple examples filling in a template (“I {NEGATION}
{POS_VERB} the {THING}.”) with pre-built lex-
icons, and compute the model’s failure rate on such
examples. Named entity recognition (NER) is an-
other capability, tested in Figure 1B with an In-
variance test (INV) – perturbations that should not
change the output of the model. In this case, chang-
ing location names should not change sentiment. In
Figure 1C, we test the model’s Vocabulary with a
Directional Expectation test (DIR) – perturbations
to the input with known expected results – adding
negative phrases and checking that sentiment does
not become more positive. As these examples indi-
cate, the matrix works as a guide, prompting users
to test each capability with different test types.

We demonstrate the usefulness and generality
of CheckList via instantiation on three NLP tasks:
sentiment analysis (Sentiment), duplicate question

detection (QQP; Wang et al., 2019b), and ma-
chine comprehension (MC; Rajpurkar et al., 2016).
While traditional benchmarks indicate that models
on these tasks are as accurate as humans, Check-
List reveals a variety of severe bugs, where com-
mercial and research models do not effectively han-
dle basic linguistic phenomena such as negation,
named entities, coreferences, semantic role label-
ing, etc, as they pertain to each task. Further,
CheckList is easy to use and provides immediate
value – in a user study, the team responsible for a
commercial sentiment analysis model discovered
many new and actionable bugs in their own model,
even though it had been extensively tested and used
by customers. In an additional user study, we found
that NLP practitioners with CheckList generated
more than twice as many tests (each test containing
an order of magnitude more examples), and uncov-
ered almost three times as many bugs, compared to
users without CheckList.

2 CheckList

Conceptually, users “CheckList” a model by fill-
ing out cells in a matrix (Figure 1), each cell po-
tentially containing multiple tests. In this section,
we go into more detail on the rows (capabilities),
columns (test types), and how to fill the cells (tests).
CheckList applies the behavioral testing principle
of “decoupling testing from implementation” by
treating the model as a black box, which allows for
comparison of different models trained on different
data, or third-party models where access to training
data or model structure is not granted.

2.1 Capabilities

While testing individual components is a common
practice in software engineering, modern NLP mod-
els are rarely built one component at a time. In-
stead, CheckList encourages users to consider how
different natural language capabilities are mani-
fested on the task at hand, and to create tests to
evaluate the model on each of these capabilities.
For example, the Vocabulary+POS capability per-
tains to whether a model has the necessary vocab-
ulary, and whether it can appropriately handle the
impact of words with different parts of speech on
the task. For Sentiment, we may want to check
if the model is able to identify words that carry
positive, negative, or neutral sentiment, by verify-
ing how it behaves on examples like “This was a
good flight.” For QQP, we might want the model to

understand when modifiers differentiate questions,
e.g. accredited in (“Is John a teacher?”, “Is John an
accredited teacher?”). For MC, the model should
be able to relate comparatives and superlatives, e.g.
(Context: “Mary is smarter than John.”, Q: “Who
is the smartest kid?”, A: “Mary”).

We suggest that users consider at least the fol-
lowing capabilities: Vocabulary+POS (important
words or word types for the task), Taxonomy (syn-
onyms, antonyms, etc), Robustness (to typos, irrele-
vant changes, etc), NER (appropriately understand-
ing named entities), Fairness, Temporal (under-
standing order of events), Negation, Coreference,
Semantic Role Labeling (understanding roles such
as agent, object, etc), and Logic (ability to handle
symmetry, consistency, and conjunctions). We will
provide examples of how these capabilities can be
tested in Section 3 (Tables 1, 2, and 3). This listing
of capabilities is not exhaustive, but a starting point
for users, who should also come up with additional
capabilities that are specific to their task or domain.

2.2 Test Types

We prompt users to evaluate each capability with
three different test types (when possible): Mini-
mum Functionality tests, Invariance, and Direc-
tional Expectation tests (the columns in the matrix).

A Minimum Functionality test (MFT), inspired
by unit tests in software engineering, is a collec-
tion of simple examples (and labels) to check a
behavior within a capability. MFTs are similar to
creating small and focused testing datasets, and are
particularly useful for detecting when models use
shortcuts to handle complex inputs without actually
mastering the capability. The Vocabulary+POS ex-
amples in the previous section are all MFTs.

We also introduce two additional test types in-
spired by software metamorphic tests (Segura et al.,
2016). An Invariance test (INV) is when we apply
label-preserving perturbations to inputs and expect
the model prediction to remain the same. Differ-
ent perturbation functions are needed for different
capabilities, e.g. changing location names for the
NER capability for Sentiment (Figure 1B), or in-
troducing typos to test the Robustness capability.
A Directional Expectation test (DIR) is similar,
except that the label is expected to change in a cer-
tain way. For example, we expect that sentiment
will not become more positive if we add “You are
lame.” to the end of tweets directed at an airline
(Figure 1C). The expectation may also be a target

label, e.g. replacing locations in only one of the
questions in QQP, such as (“How many people
are there in England?”, “What is the population
of England) Turkey?”), ensures that the questions
are not duplicates. INVs and DIRs allow us to test
models on unlabeled data – they test behaviors that
do not rely on ground truth labels, but rather on re-
lationships between predictions after perturbations
are applied (invariance, monotonicity, etc).

2.3 Generating Test Cases at Scale
Users can create test cases from scratch, or by per-
turbing an existing dataset. Starting from scratch
makes it easier to create a small number of high-
quality test cases for specific phenomena that may
be underrepresented or confounded in the original
dataset. Writing from scratch, however, requires
significant creativity and effort, often leading to
tests that have low coverage or are expensive and
time-consuming to produce. Perturbation functions
are harder to craft, but generate many test cases at
once. To support both these cases, we provide a
variety of abstractions that scale up test creation
from scratch and make perturbations easier to craft.
Templates Test cases and perturbations can of-
ten be generalized into a template, to test the
model on a more diverse set of inputs. In Fig-
ure 1 we generalized “I didn’t love the food.” with
the template “I {NEGATION} {POS_VERB} the
{THING}.”, where {NEGATION} = {didn’t, can’t
say I, ...}, {POS_VERB} = {love, like, ...}, {THING}
= {food, flight, service, ...}, and generated all test
cases with a Cartesian product. A more diverse set
of inputs is particularly helpful when a small set
of test cases could miss a failure, e.g. if a model
works for some forms of negation but not others.
Expanding Templates While templates help
scale up test case generation, they still rely on the
user’s creativity to create fill-in values for each

Figure 2: Templating with masked language models.
“I really {mask} the flight.” yields verbs that
the user can interactively filter into positive, negative,
and neutral fill-in lists.

Labels: positive, negative, or neutral; INV: same pred. (INV) after removals/ additions; DIR: sentiment should not decrease (Ò) or increase (Ó)

Test TYPE and Description Failure Rate (%) Example test cases & expected behavior
q  À RoB

Vo
ca

b.
+

PO
S

MFT: Short sentences with neu-
tral adjectives and nouns 0.0 7.6 4.8 94.6 81.8

The company is Australian. neutral
That is a private aircraft. neutral

MFT: Short sentences with
sentiment-laden adjectives 4.0 15.0 2.8 0.0 0.2

That cabin crew is extraordinary. pos
I despised that aircraft. neg

INV: Replace neutral words
with other neutral words 9.4 16.2 12.4 10.2 10.2

@Virgin should I be concerned that) when I’m about to fly ... INV
@united the) our nightmare continues... INV

DIR: Add positive phrases, fails
if sent. goes down by ą 0.1 12.6 12.4 1.4 0.2 10.2

@SouthwestAir Great trip on 2672 yesterday... You are extraordinary. Ò
@AmericanAir AA45 ... JFK to LAS. You are brilliant. Ò

DIR: Add negative phrases,
fails if sent. goes up by ą 0.1 0.8 34.6 5.0 0.0 13.2

@USAirways your service sucks. You are lame. Ó
@JetBlue all day. I abhor you. Ó

Robust.

INV: Add randomly generated
URLs and handles to tweets 9.6 13.4 24.8 11.4 7.4

@JetBlue that selfie was extreme. @pi9QDK INV
@united stuck because staff took a break? Not happy 1K.... https://t.co/PWK1jb INV

INV: Swap one character with
its neighbor (typo) 5.6 10.2 10.4 5.2 3.8

@JetBlue) @JeBtlue I cri INV
@SouthwestAir no thanks) thakns INV

N
E

R

INV: Switching locations
should not change predictions 7.0 20.8 14.8 7.6 6.4

@JetBlue I want you guys to be the first to fly to # Cuba) Canada... INV
@VirginAmerica I miss the #nerdbird in San Jose) Denver INV

INV: Switching person names
should not change predictions 2.4 15.1 9.1 6.6 2.4

...Airport agents were horrendous. Sharon) Erin was your saviour INV
@united 8602947, Jon) Sean at http://t.co/58tuTgli0D, thanks. INV

Temporal MFT: Sentiment change over
time, present should prevail 41.0 36.6 42.2 18.8 11.0

I used to hate this airline, although now I like it. pos
In the past I thought this airline was perfect, now I think it is creepy. neg

N
eg

at
io

n

MFT: Negated negative should
be positive or neutral 18.8 54.2 29.4 13.2 2.6

The food is not poor. pos or neutral
It isn’t a lousy customer service. pos or neutral

MFT: Negated neutral should
still be neutral 40.4 39.6 74.2 98.4 95.4

This aircraft is not private. neutral
This is not an international flight. neutral

MFT: Negation of negative at
the end, should be pos. or neut. 100.0 90.4 100.0 84.8 7.2

I thought the plane would be awful, but it wasn’t. pos or neutral
I thought I would dislike that plane, but I didn’t. pos or neutral

MFT: Negated positive with
neutral content in the middle 98.4 100.0 100.0 74.0 30.2

I wouldn’t say, given it’s a Tuesday, that this pilot was great. neg
I don’t think, given my history with airplanes, that this is an amazing staff. neg

SR
L

MFT: Author sentiment is more
important than of others 45.4 62.4 68.0 38.8 30.0

Some people think you are excellent, but I think you are nasty. neg
Some people hate you, but I think you are exceptional. pos

MFT: Parsing sentiment in
(question, “yes”) form 9.0 57.6 20.8 3.6 3.0

Do I think that airline was exceptional? Yes. neg
Do I think that is an awkward customer service? Yes. neg

MFT: Parsing sentiment in
(question, “no”) form 96.8 90.8 81.6 55.4 54.8

Do I think the pilot was fantastic? No. neg
Do I think this company is bad? No. pos or neutral

Table 1: A selection of tests for sentiment analysis. All examples (right) are failures of at least one model.

placeholder (e.g. positive verbs for {POS_VERB}).
We provide users with an abstraction where they
mask part of a template and get masked language
model (RoBERTa (Liu et al., 2019) in our case) sug-
gestions for fill-ins, e.g. “I really {mask} the
flight.” yields {enjoyed, liked, loved, regret,
...}, which the user can filter into positive, negative,
and neutral fill-in lists and later reuse across mul-
tiple tests (Figure 2). Sometimes RoBERTa sug-
gestions can be used without filtering, e.g. “This
is a good {mask}” yields multiple nouns that
don’t need filtering. They can also be used in per-
turbations, e.g. replacing neutral words like that or
the for other words in context (Vocabulary+POS
INV examples in Table 1). RoBERTa suggestions
can be combined with WordNet categories (syn-
onyms, antonyms, etc), e.g. such that only context-
appropriate synonyms get selected in a perturba-
tion. We also provide additional common fill-ins
for general-purpose categories, such as Named En-
tities (common male and female first/last names,
cities, countries) and protected group adjectives
(nationalities, religions, gender and sexuality, etc).

Open source We release an implementation
of CheckList at https://github.com/marcotcr/

checklist. In addition to templating features and
mask language model suggestions, it contains var-
ious visualizations, abstractions for writing test
expectations (e.g. monotonicity) and perturbations,
saving/sharing tests and test suites such that tests
can be reused with different models and by different
teams, and general-purpose perturbations such as
char swaps (simulating typos), contractions, name
and location changes (for NER tests), etc.

3 Testing SOTA models with CheckList

We CheckList the following commercial Sentiment
analysis models via their paid APIs2: Microsoft’s
Text Analytics (q), Google Cloud’s Natural Lan-
guage (), and Amazon’s Comprehend (À). We
also CheckList BERT-base () and RoBERTa-
base (RoB) (Liu et al., 2019) finetuned on SST-23

(acc: 92.7% and 94.8%) and on the QQP dataset

2From 11/2019, but obtained similar results from 04/2020.
3Predictions with probability of positive sentiment in the

p1{3, 2{3q range are considered neutral.

https://github.com/marcotcr/checklist
https://github.com/marcotcr/checklist

Label: duplicate =, or non-duplicate ,; INV: same pred. (INV) after removals/ additions

Test TYPE and Description Failure Rate Example Test cases & expected behavior
RoB

Vocab. MFT: Modifiers changes question intent 78.4 78.0 { Is Mark Wright a photographer? | Is Mark Wright an accredited photographer? } ,
Ta

xo
no

m
y MFT: Synonyms in simple templates 22.8 39.2 { How can I become more vocal? | How can I become more outspoken? } =

INV: Replace words with synonyms in real pairs 13.1 12.7 Is it necessary to follow a religion?
Is it necessary to follow an organized) organised religion?

*

INV

MFT: More X = Less antonym(X) 69.4 100.0 { How can I become more optimistic? | How can I become less pessimistic? } =

Robust.

INV: Swap one character with its neighbor (typo) 18.2 12.0 { Why am I getting) gettnig lazy? |Why are we so lazy? } INV

DIR: Paraphrase of question should be duplicate 69.0 25.0 Can I gain weight from not eating enough?
Can I) Do you think I can gain weight from not eating enough?

*

=

NER

INV: Change the same name in both questions 11.8 9.4 Why isn’t Hillary Clinton) Nicole Perez in jail?
Is Hillary Clinton) Nicole Perez going to go to jail?

*

INV

DIR: Change names in one question, expect , 35.1 30.1 What does India think of Donald Trump?
What India thinks about Donald Trump) John Green?

*

,

DIR: Keep first word and entities of a question,
fill in the gaps with RoBERTa; expect , 30.0 32.8 Will it be difficult to get a US Visa if Donald Trump gets elected?

Will the US accept Donald Trump?

*

,

Temporal

MFT: Is , used to be, non-duplicate 61.8 96.8 { Is Jordan Perry an advisor? | Did Jordan Perry use to be an advisor? } ,

MFT: before , after, non-duplicate 98.0 34.4 { Is it unhealthy to eat after 10pm? | Is it unhealthy to eat before 10pm? } ,

MFT: before becoming , after becoming 100.0 0.0 What was Danielle Bennett’s life before becoming an agent?
What was Danielle Bennett’s life after becoming an agent?

*

,

Negation
MFT: simple negation, non-duplicate 18.6 0.0 { How can I become a person who is not biased? | How can I become a biased person? } ,

MFT: negation of antonym, should be duplicate 81.6 88.6 { How can I become a positive person? | How can I become a person who is not negative } ,

Coref

MFT: Simple coreference: he , she 79.0 96.6 If Joshua and Chloe were alone, do you think he would reject her?
If Joshua and Chloe were alone, do you think she would reject him?

*

,

MFT: Simple resolved coreference, his and her 99.6 100.0 If Jack and Lindsey were married, do you think Lindsey’s family would be happy?
If Jack and Lindsey were married, do you think his family would be happy?

*

,

SRL

MFT: Order is irrelevant for comparisons 99.6 100.0 { Are tigers heavier than insects? |What is heavier, insects or tigers? } =
MFT: Orders is irrelevant in symmetric relations 81.8 100.0 { Is Nicole related to Heather? | Is Heather related to Nicole? } =
MFT: Order is relevant for asymmetric relations 71.4 100.0 { Is Sean hurting Ethan? | Is Ethan hurting Sean? } ,
MFT: Active / passive swap, same semantics 65.8 98.6 { Does Anna love Benjamin? | Is Benjamin loved by Anna? } =
MFT: Active / passive swap, different semantics 97.4 100.0 { Does Danielle support Alyssa? | Is Danielle supported by Alyssa? } ,

Logic
INV: Symmetry: pred(a, b) = pred(b, a) 4.4 2.2 { (q1, q2) | (q2, q1) } INV

DIR: Implications, eg. (a=b)^(a=c)ñ(b=c) 9.7 8.5 no example

Table 2: A selection of tests for Quora Question Pair. All examples (right) are failures of at least one model.

(acc: 91.1% and 91.3%). For MC, we use a pre-
trained BERT-large finetuned on SQuAD (Wolf
et al., 2019), achieving 93.2 F1. All the tests pre-
sented here are part of the open-source release, and
can be easily replicated and applied to new models.

Sentiment Analysis Since social media is listed
as a use case for these commercial models, we test
on that domain and use a dataset of unlabeled air-
line tweets for INV4 and DIR perturbation tests.
We create tests for a broad range of capabilities,
and present subset with high failure rates in Ta-
ble 1. The Vocab.+POS MFTs are sanity checks,
where we expect models to appropriately handle
common neutral or sentiment-laden words. and
RoB do poorly on neutral predictions (they were
trained on binary labels only). Surprisingly, 
and À fail (7.6% and 4.8%) on sentences that are
clearly neutral, with  also failing (15%) on non-
neutral sanity checks (e.g. “I like this seat.”). In
the DIR tests, the sentiment scores predicted by q
and  frequently (12.6% and 12.4%) go down con-
siderably when clearly positive phrases (e.g. “You

4For all the INV tests, models fail whenever their predic-
tion changes and the probability changes by more than 0.1.

are extraordinary.”) are added, or up (: 34.6%)
for negative phrases (e.g. “You are lame.”).

All models are sensitive to addition of random
(not adversarial) shortened URLs or Twitter han-
dles (e.g. 24.8% of À predictions change), and to
name changes, such as locations (: 20.8%, À:
14.8%) or person names (: 15.1%, À: 9.1%).
None of the models do well in tests for the Tem-
poral, Negation, and SRL capabilities. Failures
on negations as simple as “The food is not poor.”
are particularly notable, e.g.  (54.2%) and À
(29.4%). The failure rate is near 100% for all com-
mercial models when the negation comes at the end
of the sentence (e.g “I thought the plane would be
awful, but it wasn’t.”), or with neutral content be-
tween the negation and the sentiment-laden word.

Commercial models do not fail simple Fair-
ness sanity checks such as “I am a black woman.”
(template: “I am a {PROTECTED} {NOUN}.”),
always predicting them as neutral. Similar to soft-
ware engineering, absence of test failure does not
imply that these models are fair – just that they are
not unfair enough to fail these simple tests. On
the other hand, always predicts negative when

Test TYPE Failure Example Test cases (with expected behavior and prediction)
and Description Rate ()

Vo
ca

b MFT: comparisons 20.0
C: Victoria is younger than Dylan.
Q: Who is less young? A: Dylan : Victoria

MFT: intensifiers to superlative: most/least 91.3
C: Anna is worried about the project. Matthew is extremely worried about the project.
Q: Who is least worried about the project? A: Anna : Matthew

Ta
xo

no
m

y

MFT: match properties to categories 82.4 C: There is a tiny purple box in the room. Q: What size is the box? A: tiny : purple

MFT: nationality vs job 49.4
C: Stephanie is an Indian accountant.
Q: What is Stephanie’s job? A: accountant : Indian accountant

MFT: animal vs vehicles 26.2
C: Jonathan bought a truck. Isabella bought a hamster.
Q: Who bought an animal? A: Isabella : Jonathan

MFT: comparison to antonym 67.3
C: Jacob is shorter than Kimberly.
Q: Who is taller? A: Kimberly : Jacob

MFT: more/less in context, more/less
antonym in question 100.0

C: Jeremy is more optimistic than Taylor.
Q: Who is more pessimistic? A: Taylor : Jeremy

R
ob

us
t. INV: Swap adjacent characters in Q (typo) 11.6

C: ...Newcomen designs had a duty of about 7 million, but most were closer to 5 million....
Q: What was the ideal duty) udty of a Newcomen engine? A: INV : 7 million) 5 million

INV: add irrelevant sentence to C 9.8 (no example)

Te
m

po
ra

l MFT: change in one person only 41.5
C: Both Jason and Abigail were journalists, but there was a change in Abigail, who is now a model.
Q: Who is a model? A: Abigail : Abigail were journalists, but there was a change in Abigail

MFT: Understanding before/after, last/first 82.9
C: Logan became a farmer before Danielle did.
Q: Who became a farmer last? A: Danielle : Logan

N
eg

. MFT: Context has negation 67.5 C: Aaron is not a writer. Rebecca is. Q: Who is a writer? A: Rebecca : Aaron

MFT: Q has negation, C does not 100.0 C: Aaron is an editor. Mark is an actor. Q: Who is not an actor? A: Aaron : Mark

C
or

ef
.

MFT: Simple coreference, he/she. 100.0
C: Melissa and Antonio are friends. He is a journalist, and she is an adviser.
Q: Who is a journalist? A: Antonio : Melissa

MFT: Simple coreference, his/her. 100.0
C: Victoria and Alex are friends. Her mom is an agent
Q: Whose mom is an agent? A: Victoria : Alex

MFT: former/latter 100.0
C: Kimberly and Jennifer are friends. The former is a teacher
Q: Who is a teacher? A: Kimberly : Jennifer

SR
L

MFT: subject/object distinction 60.8 C: Richard bothers Elizabeth. Q: Who is bothered? A: Elizabeth : Richard

MFT: subj/obj distinction with 3 agents 95.7 C: Jose hates Lisa. Kevin is hated by Lisa. Q: Who hates Kevin? A: Lisa : Jose

Table 3: A selection of tests for Machine Comprehension.

{PROTECTED} is black, atheist, gay, and lesbian,
while predicting positive for Asian, straight, etc.

With the exception of tests that depend on pre-
dicting “neutral”, and RoB did better than all
commercial models on almost every other test. This
is a surprising result, since the commercial models
list social media as a use case, and are under regular
testing and improvement with customer feedback,
while and RoB are research models trained on
the SST-2 dataset (movie reviews). Finally, and
RoB fail simple negation MFTs, even though they
are fairly accurate (91.5%, 93.9%, respectively) on
the subset of the SST-2 validation set that contains
negation in some form (18% of instances). By iso-
lating behaviors like this, our tests are thus able to
evaluate capabilities more precisely, whereas per-
formance on the original dataset can be misleading.

Quora Question Pair While and RoB surpass
human accuracy on QQP in benchmarks (Wang
et al., 2019a), the subset of tests in Table 2 indicate
that these models are far from solving the ques-
tion paraphrase problem, and are likely relying on

shortcuts for their high accuracy.

Both models lack what seems to be crucial skills
for the task: ignoring important modifiers on the
Vocab. test, and lacking basic Taxonomy under-
standing, e.g. synonyms and antonyms of common
words. Further, neither is robust to typos or simple
paraphrases. The failure rates for the NER tests
indicate that these models are relying on shortcuts
such as anchoring on named entities too strongly
instead of understanding named entities and their
impact on whether questions are duplicates.

Surprisingly, the models often fail to make sim-
ple Temporal distinctions (e.g. is,used to be and
before,after), and to distinguish between simple
Coreferences (he,she). In SRL tests, neither model
is able to handle agent/predicate changes, or ac-
tive/passive swaps. Finally, and RoB change
predictions 4.4% and 2.2% of the time when the
question order is flipped, failing a basic task re-
quirement (if q1 is a duplicate of q2, so is q2 of q1).
They are also not consistent with Logical implica-
tions of their predictions, such as transitivity.

Machine Comprehension Vocab+POS tests in
Table 3 show that often fails to properly grasp in-
tensity modifiers and comparisons/superlatives. It
also fails on simple Taxonomy tests, such as match-
ing properties (size, color, shape) to adjectives,
distinguishing between animals-vehicles or jobs-
nationalities, or comparisons involving antonyms.

The model does not seem capable of handling
short instances with Temporal concepts such as be-
fore, after, last, and first, or with simple examples
of Negation, either in the question or in the context.
It also does not seem to resolve basic Coreferences,
and grasp simple subject/object or active/passive
distinctions (SRL), all of which are critical to true
comprehension. Finally, the model seems to have
certain biases, e.g. for the simple negation template
“{P1} is not a {PROF}, {P2} is.” as con-
text, and “Who is a {PROF}?” as question, if
we set {PROF} = doctor, {P1} to male names and
{P2} to female names (e.g. “John is not a doctor,
Mary is.”; “Who is a doctor?”), the model fails
(picks the man as the doctor) 89.1% of the time.
If the situation is reversed, the failure rate is only
3.2% (woman predicted as doctor). If {PROF} =

secretary, it wrongly picks the man only 4.0% of
the time, and the woman 60.5% of the time.

Discussion We applied the same process to very
different tasks, and found that tests reveal interest-
ing failures on a variety of task-relevant linguistic
capabilities. While some tests are task specific (e.g.
positive adjectives), the capabilities and test types
are general; many can be applied across tasks, as is
(e.g. testing Robustness with typos) or with minor
variation (changing named entities yields different
expectations depending on the task). This small se-
lection of tests illustrates the benefits of systematic
testing in addition to standard evaluation. These
tasks may be considered “solved” based on bench-
mark accuracy results, but the tests highlight vari-
ous areas of improvement – in particular, failure to
demonstrate basic skills that are de facto needs for
the task at hand (e.g. basic negation, agent/object
distinction, etc). Even though some of these fail-
ures have been observed by others, such as typos
(Belinkov and Bisk, 2018; Rychalska et al., 2019)
and sensitivity to name changes (Prabhakaran et al.,
2019), we believe the majority are not known to
the community, and that comprehensive and struc-
tured testing will lead to avenues of improvement
in these and other tasks.

4 User Evaluation

The failures discovered in the previous section
demonstrate the usefulness and flexibility of Check-
List. In this section, we further verify that Check-
List leads to insights both for users who already
test their models carefully and for users with little
or no experience in a task.

4.1 CheckListing a Commercial System

We approached the team responsible for the gen-
eral purpose sentiment analysis model sold as a
service by Microsoft (q on Table 1). Since it is a
public-facing system, the model’s evaluation proce-
dure is more comprehensive than research systems,
including publicly available benchmark datasets
as well as focused benchmarks built in-house (e.g.
negations, emojis). Further, since the service is ma-
ture with a wide customer base, it has gone through
many cycles of bug discovery (either internally
or through customers) and subsequent fixes, after
which new examples are added to the benchmarks.
Our goal was to verify if CheckList would add
value even in a situation like this, where models are
already tested extensively with current practices.

We invited the team for a CheckList session last-
ing approximately 5 hours. We presented Check-
List (without presenting the tests we had already
created), and asked them to use the methodology
to test their own model. We helped them imple-
ment their tests, to reduce the additional cognitive
burden of having to learn the software components
of CheckList. The team brainstormed roughly 30
tests covering all capabilities, half of which were
MFTs and the rest divided roughly equally between
INVs and DIRs. Due to time constraints, we imple-
mented about 20 of those tests. The tests covered
many of the same functionalities we had tested our-
selves (Section 3), often with different templates,
but also ones we had not thought of. For example,
they tested if the model handled sentiment coming
from camel-cased twitter hashtags correctly (e.g.
“#IHateYou”, “#ILoveYou”), implicit negation (e.g.
“I wish it was good”), and others. Further, they
proposed new capabilities for testing, e.g. handling
different lengths (sentences vs paragraphs) and sen-
timent that depends on implicit expectations (e.g.
“There was no {AC}” when {AC} is expected).

Qualitatively, the team stated that CheckList
was very helpful: (1) they tested capabilities they
had not considered, (2) they tested capabilities that
they had considered but are not in the benchmarks,

and (3) even capabilities for which they had bench-
marks (e.g. negation) were tested much more thor-
oughly and systematically with CheckList. They
discovered many previously unknown bugs, which
they plan to fix in the next model iteration. Finally,
they indicated that they would definitely incorpo-
rate CheckList into their development cycle, and
requested access to our implementation. This ses-
sion, coupled with the variety of bugs we found
for three separate commercial models in Table 1,
indicates that CheckList is useful even in pipelines
that are stress-tested and used in production.

4.2 User Study: CheckListMFTs

We conduct a user study to further evaluate dif-
ferent subsets of CheckList in a more controlled
environment, and to verify if even users with no
previous experience in a task can gain insights and
find bugs in a model. We recruit 18 participants
(8 from industry, 10 from academia) who have at
least intermediate NLP experience5, and task them
with testing finetuned on QQP for a period of
two hours (including instructions), using Jupyter
notebooks. Participants had access to the QQP val-
idation dataset, and are instructed to create tests
that explore different capabilities of the model. We
separate participants equally into three conditions:
In Unaided, we give them no further instructions,
simulating the current status-quo for commercial
systems (even the practice of writing additional
tests beyond benchmark datasets is not common for
research models). In Cap. only, we provide short
descriptions of the capabilities listed in Section 2.1
as suggestions to test, while in Cap.+templ. we
further provide them with the template and fill-in
tools described in Section 2.3. Only one partici-
pant (in Unaided) had prior experience with QQP.
Due to the short study duration, we only asked
users to write MFTs in all conditions; thus, even
Cap.+templ. is a subset of CheckList.

We present the results in Table 4. Even though
users had to parse more instructions and learn a
new tool when using CheckList, they created many
more tests for the model in the same time. Further,
templates and masked language model suggestions
helped users generate many more test cases per test
in Cap.+templ. than in the other two conditions
– although users could use arbitrary Python code
rather than write examples by hand, only one user
in Unaided did (and only for one test).

5i.e. have taken a graduate NLP course or equivalent.

Unaided CheckList

Cap. only Cap.+templ.

#Tests 5.8˘ 1.1 10.2˘ 1.8 13.5˘ 3.4
#Cases/test 7.3˘ 5.6 5.0˘ 1.2 198.0˘ 96
#Capabilities tested 3.2˘ 0.7 7.5˘ 1.9 7.8˘ 1.1

Total severity 10.8˘ 3.8 21.7˘ 5.7 23.7˘ 4.2
#Bugs (sev ě 3q 2.2˘ 1.2 5.5˘ 1.7 6.2˘ 0.9

Table 4: User Study Results: first three rows indi-
cate number of tests created, number of test cases per
test and number of capabilities tested. Users report the
severity of their findings (last two rows).

Users explored many more capabilities on
Cap. only and Cap.+templ. (we annotate tests with
capabilities post-hoc); participants in Unaided only
tested Robustness, Vocabulary+POS, Taxonomy,
and few instances of SRL, while participants in the
other conditions covered all capabilities. Users in
Cap. only and Cap.+templ. collectively came up
with tests equivalent to almost all MFTs in Table 2,
and more that we had not contemplated. Users
in Unaided and Cap. only often did not find more
bugs because they lacked test case variety even
when testing the right concepts (e.g. negation).

At the end of the experiment, we ask users to
evaluate the severity of the failures they observe
on each particular test, on a 5 point scale6. While
there is no “ground truth”, these severity ratings
provide each user’s perception on the magnitude of
the discovered bugs. We report the severity sum of
discovered bugs (for tests with severity at least 2),
in Table 4, as well as the number of tests for which
severity was greater or equal to 3 (which filters
out minor bugs). We note that users with Check-
List (Cap. only and Cap.+templ.) discovered much
more severe problems in the model (measured by
total severity or # bugs) than users in the control
condition (Unaided). We ran a separate round of
severity evaluation of these bugs with a new user
(who did not create any tests), and obtain nearly
identical aggregate results to self-reported severity.

The study results are encouraging: with a subset
of CheckList, users without prior experience are
able to find significant bugs in a SOTA model in
only 2 hours. Further, when asked to rate different
aspects of CheckList (on a scale of 1-5), users in-
dicated the testing session helped them learn more
about the model (4.7 ˘ 0.5), capabilities helped
them test the model more thoroughly (4.5 ˘ 0.4),
and so did templates (4.3 ˘ 1.1).

61 (not a bug), 2 (minor bug), 3 (bug worth investigating
and fixing), 4 (severe bug, model may not be fit for production),
and 5 (no model with this bug should be in production).

5 Related Work

One approach to evaluate specific linguistic capa-
bilities is to create challenge datasets. Belinkov
and Glass (2019) note benefits of this approach,
such as systematic control over data, as well as
drawbacks, such as small scale and lack of resem-
blance to “real” data. Further, they note that the
majority of challenge sets are for Natural Language
Inference. We do not aim for CheckList to replace
challenge or benchmark datasets, but to comple-
ment them. We believe CheckList maintains many
of the benefits of challenge sets while mitigating
their drawbacks: authoring examples from scratch
with templates provides systematic control, while
perturbation-based INV and DIR tests allow for
testing behavior in unlabeled, naturally-occurring
data. While many challenge sets focus on extreme
or difficult cases (Naik et al., 2018), MFTs also
focus on what should be easy cases given a capa-
bility, uncovering severe bugs. Finally, the user
study demonstrates that CheckList can be used ef-
fectively for a variety of tasks with low effort: users
created a complete test suite for sentiment analysis
in a day, and MFTs for QQP in two hours, both
revealing previously unknown, severe bugs.

With the increase in popularity of end-to-
end deep models, the community has turned to
“probes”, where a probing model for linguistic phe-
nomena of interest (e.g. NER) is trained on in-
termediate representations of the encoder (Tenney
et al., 2019; Kim et al., 2019). Along similar lines,
previous work on word embeddings looked for cor-
relations between properties of the embeddings
and downstream task performance (Tsvetkov et al.,
2016; Rogers et al., 2018). While interesting as
analysis methods, these do not give users an under-
standing of how a fine-tuned (or end-to-end) model
can handle linguistic phenomena for the end-task.
For example, while Tenney et al. (2019) found that
very accurate NER models can be trained using
BERT (96.7%), we show BERT finetuned on QQP
or SST-2 displays severe NER issues.

There are existing perturbation techniques meant
to evaluate specific behavioral capabilities of NLP
models such as logical consistency (Ribeiro et al.,
2019) and robustness to noise (Belinkov and Bisk,
2018), name changes (Prabhakaran et al., 2019),
or adversaries (Ribeiro et al., 2018). CheckList
provides a framework for such techniques to sys-
tematically evaluate these alongside a variety of
other capabilities. However, CheckList cannot be

directly used for non-behavioral issues such as data
versioning problems (Amershi et al., 2019), label-
ing errors, annotator biases (Geva et al., 2019),
worst-case security issues (Wallace et al., 2019), or
lack of interpretability (Ribeiro et al., 2016).

6 Conclusion

While useful, accuracy on benchmarks is not suffi-
cient for evaluating NLP models. Adopting princi-
ples from behavioral testing in software engineer-
ing, we propose CheckList, a model-agnostic and
task-agnostic testing methodology that tests indi-
vidual capabilities of the model using three differ-
ent test types. To illustrate its utility, we highlight
significant problems at multiple levels in the con-
ceptual NLP pipeline for models that have “solved”
existing benchmarks on three different tasks. Fur-
ther, CheckList reveals critical bugs in commercial
systems developed by large software companies, in-
dicating that it complements current practices well.
Tests created with CheckList can be applied to any
model, making it easy to incorporate in current
benchmarks or evaluation pipelines.

Our user studies indicate that CheckList is easy
to learn and use, and helpful both for expert users
who have tested their models at length as well as
for practitioners with little experience in a task.
The tests presented in this paper are part of Check-
List’s open source release, and can easily be in-
corporated into existing benchmarks. More impor-
tantly, the abstractions and tools in CheckList can
be used to collectively create more exhaustive test
suites for a variety of tasks. Since many tests can
be applied across tasks as is (e.g. typos) or with
minor variations (e.g. changing names), we ex-
pect that collaborative test creation will result in
evaluation of NLP models that is much more ro-
bust and detailed, beyond just accuracy on held-out
data. CheckList is open source, and available at
https://github.com/marcotcr/checklist.

Acknowledgments

We would like to thank Sara Ribeiro, Scott Lund-
berg, Matt Gardner, Julian Michael, and Ece Kamar
for helpful discussions and feedback. Sameer was
funded in part by the NSF award #IIS-1756023,
and in part by the DARPA MCS program under
Contract No. N660011924033 with the United
States Office of Naval Research.

https://github.com/marcotcr/checklist

References
Saleema Amershi, Andrew Begel, Christian Bird, Rob

DeLine, Harald Gall, Ece Kamar, Nachi Nagap-
pan, Besmira Nushi, and Tom Zimmermann. 2019.
Software engineering for machine learning: A case
study. In International Conference on Software En-
gineering (ICSE 2019) - Software Engineering in
Practice track. IEEE Computer Society.

Boris Beizer. 1995. Black-box Testing: Techniques for
Functional Testing of Software and Systems. John
Wiley & Sons, Inc., New York, NY, USA.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In International Conference on Learning Rep-
resentations.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Mor Geva, Yoav Goldberg, and Jonathan Berant. 2019.
Are we modeling the task or the annotator? an inves-
tigation of annotator bias in natural language under-
standing datasets. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1161–1166.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In Proceedings of NAACL-HLT, pages 1875–1885.

Najoung Kim, Roma Patel, Adam Poliak, Patrick Xia,
Alex Wang, Tom McCoy, Ian Tenney, Alexis Ross,
Tal Linzen, Benjamin Van Durme, et al. 2019. Prob-
ing what different nlp tasks teach machines about
function word comprehension. In Proceedings of
the Eighth Joint Conference on Lexical and Compu-
tational Semantics (* SEM 2019), pages 235–249.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress Test Evaluation for Natural Language Infer-
ence. In International Conference on Computa-
tional Linguistics (COLING).

Kayur Patel, James Fogarty, James A Landay, and Bev-
erly Harrison. 2008. Investigating statistical ma-
chine learning as a tool for software development.
In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, pages 667–676.
ACM.

Vinodkumar Prabhakaran, Ben Hutchinson, and Mar-
garet Mitchell. 2019. Perturbation sensitivity analy-
sis to detect unintended model biases. In Proceed-
ings of the 2019 Conference on Empirical Methods

in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5740–5745, Hong
Kong, China. Association for Computational Lin-
guistics.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 784–
789, Melbourne, Australia. Association for Compu-
tational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt,
and Vaishaal Shankar. 2019. Do imagenet classifiers
generalize to imagenet? In International Confer-
ence on Machine Learning, pages 5389–5400.

Marco Tulio Ribeiro, Carlos Guestrin, and Sameer
Singh. 2019. Are red roses red? evaluating con-
sistency of question-answering models. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 6174–6184.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Why should i trust you?: Explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining,
pages 1135–1144. ACM.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversarial
rules for debugging nlp models. In Association for
Computational Linguistics (ACL).

Anna Rogers, Shashwath Hosur Ananthakrishna, and
Anna Rumshisky. 2018. What’s in your embedding,
and how it predicts task performance. In Proceed-
ings of the 27th International Conference on Com-
putational Linguistics, pages 2690–2703, Santa Fe,
New Mexico, USA. Association for Computational
Linguistics.

Barbara Rychalska, Dominika Basaj, Alicja
Gosiewska, and Przemysław Biecek. 2019. Models
in the wild: On corruption robustness of neural nlp
systems. In International Conference on Neural
Information Processing, pages 235–247. Springer.

Sergio Segura, Gordon Fraser, Ana B Sanchez, and An-
tonio Ruiz-Cortés. 2016. A survey on metamorphic
testing. IEEE Transactions on software engineering,
42(9):805–824.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In

https://www.microsoft.com/en-us/research/publication/software-engineering-for-machine-learning-a-case-study/
https://www.microsoft.com/en-us/research/publication/software-engineering-for-machine-learning-a-case-study/
https://doi.org/10.18653/v1/D19-1578
https://doi.org/10.18653/v1/D19-1578
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://www.aclweb.org/anthology/C18-1228
https://www.aclweb.org/anthology/C18-1228
https://doi.org/10.18653/v1/P19-1452

Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Yulia Tsvetkov, Manaal Faruqui, and Chris Dyer. 2016.
Correlation-based intrinsic evaluation of word vec-
tor representations. In Proceedings of the 1st Work-
shop on Evaluating Vector-Space Representations
for NLP, pages 111–115, Berlin, Germany. Associ-
ation for Computational Linguistics.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner,
and Sameer Singh. 2019. Universal adversarial trig-
gers for attacking and analyzing nlp. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2153–2162.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019a. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems. In Advances in Neural Infor-
mation Processing Systems, pages 3261–3275.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Inter-
national Conference on Learning Representations.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer,
and Daniel S Weld. 2019. Errudite: Scalable, repro-
ducible, and testable error analysis. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 747–763.

https://doi.org/10.18653/v1/W16-2520
https://doi.org/10.18653/v1/W16-2520
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7

	chris
	nlp-and-network-coding-for-textual-corpus-analysis_coursepak
	1.2 Jurafsky_&_Martin_Neural_Networks_&_Neural_Language_Models_2020.pdf
	Neural Networks and Neural Language Models
	Units
	The XOR problem
	The solution: neural networks

	Feed-Forward Neural Networks
	Training Neural Nets
	Loss function
	Computing the Gradient
	Computation Graphs
	Backward differentiation on computation graphs
	More details on learning

	Neural Language Models
	Embeddings
	Training the neural language model

	Summary
	Bibliographical and Historical Notes

	3.0 Jurafsky_&_Martin_Vector_Semantics_and_Embeddings_2020.pdf
	Vector Semantics and Embeddings
	Lexical Semantics
	Vector Semantics
	Words and Vectors
	Vectors and documents
	Words as vectors: document dimensions
	Words as vectors: word dimensions

	Cosine for measuring similarity
	TF-IDF: Weighing terms in the vector
	Pointwise Mutual Information (PMI)
	Applications of the tf-idf or PPMI vector models
	Word2vec
	The classifier
	Learning skip-gram embeddings
	Other kinds of static embeddings

	Visualizing Embeddings
	Semantic properties of embeddings
	Embeddings and Historical Semantics

	Bias and Embeddings
	Evaluating Vector Models
	Summary
	Bibliographical and Historical Notes
	Exercises

